Differential Equations

Worksheet 18

TITLE Linear Systems with Real Eigenvalues
CURRENT READING Blanchard, 3.3
Homework \#7 Assignments due Monday October 27 (* indicates EXTRA CREDIT)
Section 3.3: 3, 4, 7, 8, 20^{*}.
Section 3.4: 1, 2, 3, 4, 16*, 23^{*}.

SUMMARY

We'll continue to explore the various scenarios that occur with linear systems of ODEs that possess real eigenvalues.

1. Two Real Eigenvalues

Given a system of linear ODEs with associated matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the characteristic polynomial $p(\lambda)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+a d-b c=\lambda^{2}-\operatorname{tr}(\mathrm{A}) \lambda+\operatorname{det}(\mathrm{A})=0$.

EXAMPLE

What is the condition the characteristic polynomial $p(\lambda)=\lambda^{2}-(a+d) \lambda+a d-b c$ must satisfy in order to produce real eigenvalues?

2. Classifying Equilibrium Points

Suppose a linear system has two real, nonzero, distinct eigenvalues λ_{1} and λ_{2}.
The solutions λ_{1} and λ_{2} to the characteristic polynomial can be classified into a number of different cases depending on the qualities the eigenvalues possess. In addition, the equilibrium at the origin can be classified as well, and a typical phase portrait sketched for each case.

Grouphork

On the next few pages, you will find a specific case, with an example of an ODE that satisfies the case and a classification of the origin. For each case:
Check that the given matrix will definitely produce real eigenvalues. Then find the eigenvalues and eigenvectors in order to write down the general solution of the given ODE.
Use HPGSystemsSolver or PPLANE to help you sketch the phase portrait for each case on the given axes. Also sketch the nullclines. Write down a few sentences describing your observations of the phase portrait.
3. CASE 1: $\lambda_{1}>0$ and $\lambda_{2}>0$

In this case the origin is an unstable source.

Solve $\frac{d \vec{x}}{d t}=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right] \vec{x}$.
4. CASE 2: $\lambda_{1}<0$ and $\lambda_{2}<0$

In this case the origin is a stable sink.

Solve $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}-2 & -1 \\ 2 & -5\end{array}\right] \vec{x}$
5. CASE 3: $\lambda_{1}>0$ and $\lambda_{2}<0$

In this case the origin is a unstable saddle.

Solve $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}2 & 3 \\ 0 & -4\end{array}\right] \vec{x}$

