1. Consider the first-order, nonlinear, Clairault ordinary differential equation

$$y = x \left(\frac{dy}{dx}\right) - \frac{1}{4} \left(\frac{dy}{dx}\right)^2$$

(a) 1 point. Confirm that the family of solutions is the set of lines $y = Cx - \frac{1}{4}C^2$.

LHS=
$$CX - \frac{1}{4}C^{2}$$
 RHS = $X(C) - \frac{1}{4}(C)^{2}$
LHS = RHS

(b) 3 points. Show that the lines $y = Cx - \frac{1}{4}C^2$ are tangent to the curve $y = x^2$ at the point $\left(\frac{C}{2}, \frac{C^2}{4}\right)$ and sketch the curve and its tangents below for at least 4 values of C.

(c) 1 point. Explain how parts (a) and (b) imply that $y = x^2$ is a singular solution of the given Clairault equation. [HINT: A singular solution of an ODE is one which solves the ODE but is not a member of the family of solutions.]

$$y = x^{2}$$

$$\frac{dy}{dx} = 2x$$

member of the family of solutions.]

$$y = x^{2}$$

$$LMS = x^{2}$$

$$2y = 2x$$

$$RMS = x (2x) - \frac{1}{4}(2x)^{2}$$

$$= 2x^{2} - \frac{1}{4}x^{2}$$

$$= 2x^{2} - x^{2}$$

$$LMS = RMS = x$$

y=x2 is a solution Since it is taugestial to every prember of the family of solutions given by y= (x-10)
y=x is called a
SINGULAR solution