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35. (a) Consider "
LIf1= F(s) :f F@) et dr.
0

We can calculate d F'/ds by differentiating under the integral sign. That is,

aF _ [T 8 ~st
-‘-i-;ﬁfo 8S(f(x).e ) dt

= /Oo f@ (e " dt
0 .

= —LIF ()]

(b) If we apply this result to

2)—1

LIsnof] = = = w(s* +
T2t

we obtain
LIt sinowt] = —o(—=1)(s? + 0?) 7%(2s)

_ 2ws
T (2w

Comparé this result with the result of Exercise 6.
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7°1.)This is the % case of I'Hopital’s Rule. Differentiating numerator and denominator with respect to

At, we obtain
SAL (__S)e—sAt

2 b

se

which simplifies to
S(esAt + eﬁsAt)
5 .

Since both 2! and e ™52 tend to 1 as At — 0, the desired limit is s.

@Taking Laplace transforms of both sides and applying the rules yields
s2 L]~ 5y(0) — ¥'(0) + 3L[y] = 5L[52).

25

Simplifying, using the initial conditions, and the fact that L[§3] = ™=, we get

(5% + 3)Lly] = 5¢7,

A e
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Hence,
e 28
LIyl =5 .
Yl=53 3
This can be written as
5 5 /3
°E[y] - :/—-'ge S2 T 3)

which yields

() = :%uz(z) sin (ﬁ(z _ 2)) .

o

. Applying the Laplace transform to both sides, using the rules, and the fact that L£[83] = 739, we get
s2 LIyl = sy(0) = ¥'(0) + 25 LIy} = 2y(0) + 5Lyl = &7
Substituting the given initial conditions, we have |

s+3 e~3s

Lly] = }
] s2+28+5+82+2s~j~5

Using the fact that 2 + 2s + 5 = (s + 1)% + 4, we obtain

s+l 2 1 3 2
=it erorra 2 Gro+s

Therefore,

1 .
y(t) = e~ cos2t + e sin2s + Eug(t)e—(t_?’) sin(2(t — 3)).

. Taking the Laplace transform of both sides, using the rules, and the fact that L[8,] = e~ %, we get
s2LLy] = 5y(0) — ¥'(0) + 25Ly] — 29(0) + 2LIy] = —2¢7.
Substituting the given initial conditions, we obtain

2s 4+ 4 e~

L[y] = - .
D= 37 " v 12

Using 2425 +2=1(s+ 1)? + 1 in the denominator gives us

s+1 1 25 1

=2 2 Y P P —
L] (S+1)2+1+(S+1)2+1 C G+ DI+l

Taking the inverse Laplace transform, we have

y(t) = 2¢ " cost +2e¢ " sint — 2u2(t)¢_(t'2) sin(z — 2).



548
(3 Yoplying Lapl

Substituting the initial conditions gives us

6. (a) The characteristic polynomial of the unforced oscillator is A2 + 2A 4+ 3, and the eigenvalues are
A = —14+/2i. Hence, the natural period is /2 7 and the damping causes the solutions of the
unforced equation to tend to zero like e *, At = 4, the system is given a jolt, so the solution
rises. After t = 4, the equation is unforced, so the solution again tends to zero as e ¢,
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e 36—4s
: s24+254+3 $2+25 13
Now, using that s2 + 25 + 3 = (s + 1)2 ++ 2, we have '

1 2 3 2
L[y] = L V2 IR

V2 GHD2+2 2 DT

L[y] =

So,

() = %ul(z)e*“*) sin(+v/2(t — 1)) — %M(z)e*(f““) sin(+v/2(t — 4)).

(b) Taking Laplace transforms of both sides of the equation, we have
s*LIy1 = 5y(0) ~ y'(0) + 25 LIy] — 29(0) + 3.LLy] = L[54].
Plugging in the initial conditions and solving for JL[y] gives us

s+2 + e
2425 +3  §2425 43"

L[y] =

If we complete the square for the polynomial s2 + 2s - 3,bwe gets?+25+3 = (s+ 12+ 2,50

s+1 1 V2 1 4y 2

Lyl=rrrer— e —— Y2
Ly] +D2+2 2 +1D24+2 3 G+ 1242
Therefore,
' 1 1
t :e"’cos«/ﬁt%———e“tsinﬁt-{-—-—u e D sin(v2(t — 4 .
y () NG .«/54() (v2( ))
(c) y
1—1

AN

T T— e t
S»>—""4 6 g

Note that the solution goes through about 3/4 of a natural period before the application of
the delta function. The delta function forcing causes the second maximum of the solution to
be much higher than it would have been without the forcing, but the long term effect is small

because the damping is fairly large.

ace transform to both sides, using the rules, and the fact that L[6g] = ™%, we get

s*LIy] = 5y(0) ~ y'(0) + 25LLy] — 29(0) + 3L[y] = ¢~ ~ 3e~%
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@ (a) From the table S

L[] =e*
' e~ 98 . _
sLfugl —ug(0) = - —0=e %,
(b) The formula for the Laplace transform of a derivative is
dy '
L] —= | =sL[y]— y(
[ = r] syl — y(0)

and this is exactly the relationship between the Laplace transforms of u4(¢) and 8, (#). Hence,
it is tempting to think of the Dirac delta function as the derivative of the Heaviside function.

(¢) We can think of the Heaviside function u,(t) as a-limit of piecewise linear functions equal to
zero for ¢ less than a — At, equal to one for ¢ greater than a+ At and a straight line for ¢ between
a — At and a + At. The derivative of this function is precisely the function ga, used to define
the Dirac delta function, This is still just an informal relationship until we specify in what sense
we are taking the limit.

ctually, this exercise is a little more complicated than it seems at first. We can think of g as a
periodic function with period a and apply Exercise 16 in Section 6.2, but to do so, we must decide
how to integrate 8,(t) over the interval 0 < ¢ < a. In other words, is the impulse inside or outside
the interval? : ‘ '

To avoid this issue, we consider the function

FO =D bnatap(®).

n=0

We can apply the periodicity formula from Exercise 16 in Section 6.2 to this function to get

1 @ 1 “ _
oﬁff]:i‘:"e*:;;fo fe Stdt:m/o Baj2(r) €% dt,

because 8,444/2(t) = 0 for all n > 0 on the interval [0, a]. Moreover,

a
fo a2 () €™ dt = L[8572]

because 8q/2(t) = O forall t > a/2. Therefore, we have
e as/2
- LUfl= 1",
To obtain L£[g], we use fhe relation g(2) = uq2(t) f (¢ — a/2) to obtain

—~as/2 . —as

_ _asp € e
Lig) == l—e™as 1 —gas

Note that this is the same answer we get if we apply the periodicity formula directly to g(r)
assuming that the entire impulse takes place inside the interval 0 < ¢ < a. In other words, if we
assume that ‘

a
f 8a(1) e St dt = ™%,
0
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then we get

Llg] =

1 a /
-
I—e‘“s_/o g®ye gy

1 a

-8t

e-—as

C l—emast

(a) To compute the Laplace transform of the infinite sum on the right-hand side of the equation,
We can either sum the geome

tric series that resulis from the fact that L[Er] = e—ns
Exercise 16 in Section 6.2. Either way, we get - ‘

£ [i@ﬂ;)] - = m_l_h
n=1

I—e™ g5

or use

For our purposes, it is actually better to leave the Laplace transform of the right-hand side as

o0 o0
£ [Z S (z)J = "e,
- n=1 n=1
Since y(0) = 0 and Y'(0) = 0, the transformed equation is

SLYI+2L[] = 3 e

n=l

3

which simplifies to
‘ 1 o0 X gns
Lyl = —5—2 Y Ygmns ~g—,
D=7 . §s2+2

n==

(b) Since

[ ens N n._l_., . o
L [m]—-ﬁuna) Sm(\/i(t n)),

we have
I & /3
y{t) = — Un () sin(~/2 (¢t — n)).
(¢) The period of the forcing is different from the natural period of the unforced oscillator, Hence,
the solution oscillates but not periodically.

10. (a) To compute the Laplace transform
can either sum the
We get

of the infinite sum on the right-
geometric series or use Exercise 16 in Section

- i
°C 2527171' (t) = '1”"’“““"" :
n=]

hand side of the equation, we
6.2 (see Exercise 9 as well).

—e—2n"




