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quency are the same, 1 /7. The solution will have a reso-

nance term of the form ¢ sin 2t and/or 7 cos 2t. Except for the resonance term(s), all the other terms in
the solution are periodic with period 7; SO, the Poincaré return map does not see the non-resonance
y time increase of 7 the amplitude of the resonance term(s) increases linearly, thus

stant points along a straight line.

10. The natural frequency and the forcing fre

terms. For ever
one expects the Poincaré return map to be a sequence of equidi
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REVIEW EXERCISES FOR CHAPTER 5

1. Since the equilibrium point is at the origin and the system has only polynomial terms, the linearized

system is just the linear terms in dx/dt and dy/dt, that is,
dx
dt
dy
dt

= X

= —2)7

2. From the linearized system in Exercise 1, we see (without any calculation) that the eigenvalues are 1

and —2. Hence, the origin is a saddle.

3. he Jacobian matrix for this system is

2x + 3cos3x 0
—yCOSXYy 2 — X COSXYy

and evaluating at (0, 0), we get

30
0 2
So the linearized system at the origin is

dx
=3
dt *
d
.,
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for some function H(x,y). Inthatc

For this system, W€ have
3 [dx 3 [dy
O (%Y =2y and — T\ = —2y.

dt oy \ dt

0x
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uld have
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Since these two partials do not agr
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for some function G (x, y).

For this system, we have
3 [dx a [dy
O [4X\ oy 42y and 7 = 2X.
dy \ di dx \ di

do not agree, no such function G (x, y) €xists.

Since these two partials
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Some possibilities are:

* The solution is unbounded. That is, either |x(¢)| — oo or |y(r)] — oo (or both) as ¢ increases.

* Similarly, x(¢) or y(z) (or both) oscillate with increasing amplitude as ¢ increases (similar to
tsint).

+ The solution tends to an equilibrium point.

« The solution tends to a periodic solution, as in the Van der Pol equation (see Section 5.1).

» The solution tends to a curve consisting of equilibrium points and solutions connecting equilib-
rium points.

9. If the system is a linear system, then all nonequilibrium solutions tend to infinity as ¢ increases, that
is, [Y(t)] = oo ast — oo.
If the system is not linear, it is possible for a solution to spiral toward a periodic solution. For
example, consider the Van der Pol equation discussed in Section 5.1. (These two behaviors are the
only possibilities.)

10. Since a solution that enters the first quadrant cannot leave, the origin cannot be a spiral sink, a spiral
source, or a center.
However, a sink, a saddle, or a source are all possibilities. For example,

dx
dt
dy
dt

=-2x+y
=x—y

has a sink at the origin,
dx
dt
dy

— =y

dt

has a saddle at the origin, and

dx

__:—_2

dt Xty
dy
arTF

has a source at the origin.

11. True. The x-nullcline is where dx/dt = 0 and the y-nullcline is where dy/dr = 0, so any point in
common must be an equilibrium point.

@ False. For example, both nullclines for the system

dx

—_— X —
dt Y
dy

— o -— X
dt Y

are the line y = x. Moreover, since the nuliclines are identical, all points on the line are equilib
points. ‘
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jlibrium points are the solutions of

y2 _x2=1=0
2xy =0,
g, (0, £1)-
The J acobian matrix is
—2x 2y
2y 2x
At (0, 1), the Jacobian is
0 2
2 0

Its characteristic polynomial is A2 — 4, s01ts eigenvalues are a = £2. The equilibrium point is
a saddle.

At (0, —1), the Jacobian is
0 -2

-2 0
Its characteristic polynomial is A2 — 4, s0its eigenvalues are » = £2. The equilibrium point is
a saddle.

2 — 1, and the y-nullcl'mes are the x- and y-axes.

(b) The x-nullcline is the hyperbola y2 —x
In the following figures, the nullclines are on the left and the phase portrait is On the right.
y
2
X X
2

(c) To see if the system is Hamiltonian, weé compute

g(y2 —x*—1 a(2xy
_Q’_,_._)_C—-—«——l:__'z_x and __.___(,é,x_}—)—:_—zx
))

ox

ree, the system is Hamiltonian.

Since these partials ag
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The Hamiltonian is a function H (x, y) such that

oH d oH  dy
o _ X 221 and 97 Y o oy

dy dt dx dt
We integrate the second equation with respect to x to see that
H(x,y) = —x"y + o0,
hose derivative with respect to x are Zero. Using this expres-

where ¢ (y) represents the terms w
sion for H(x, y) in the first equation, we obtain

—-)62 + ¢’(y) = ).'2 — x2 — 1.

Hence, ¢'(¥) = y2 — 1, and we can take o(y) = —;-y3 — y. The function

3
Hix.y) = —x2y + % =

3
is a Hamiltonian function for this system.
(d) To see if the system is a gradient system, We compute
3(y? —x? -1 d(2xy
807 ==, g 22N gy
dy
Since these partials agree, the system is a gradient system.
We must now find a function G(x, y) such that
d G dx ) 2 0 G dy
O 2 —y?—x*—1 and —_ = = 2XxY.
ax dt Y ay dt Y

Integrating the second equation with respect to y, weé obtain
G(x,y) = xy* + hx),

where h(x) represents the terms whose derivative with respect to y are zero.
Using this expression for G(x, y) in the first equation, we obtain
V24 (x) = y? —xr -1
Hence, h'(x) = —x2 — 1, and we can take hix) = —%x3 — x. The function
2 X ’
Gx,y)=xy — Y —X
is the required function.

26. (a) Letting y = dx/dt, we obtain the system

dx
a7
dy 3
= =3x —x" —2y.
= X — X y
From the first equation, we see that y = 0 for any equilibrium point. Substituting y = 01
3 _2y = 0yieldsx = Oor 42 = 3. Hence, the equilibria are (0, 0) and §

the equation 3x — x

(£+/3,0).
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= Jacobian matrix is

0 1
3—3x2 =2
[valuating the Jacobian at (0, 0) yields %
0o 1
3 2/’

which has eigenvalues —3 and 1. Hence, the origin is a saddle. At (ﬂ:ﬂ , 0), the Jacobian
matrix is ’ %
0 1 '

-6 -2
which has eigenvalues —1 £ /5. Hence, these two equilibria are spiral sinks.

see if the system is Hamiltonian, we compute
(—x +3y)

(-3 10
__(___,_._x__—+_._.——)—)2 = -3 and — = —3,
ox dy

Since these partials agree, the system is Hamiltonian.
To find the Hamiltonian function, we use the fact that
oH dx

M _ 9% _ 35 4+ 10y.
oy dr xR

1
|

Integrating with respect to y gives \
H(x,y) = =3xy + 5y° + ¢ (%), |

where ¢ (x) represents the terms whose derivative with respect to y are zero. Differentiating this

expression for H (x, y) with respect to x gives

dy
—3y+¢'(x) = —a—)t— =x — 3y.

We choose ¢ (x) = %xz and obtain the Hamiltonian function

x2

H(x,y)= —3xy+ 5)72 + >

We know that the solution curves of a Hamiltonian system remain on the Jevel sets of the Hamil-
tonian function. Hence, solutions of this system satisfy the equation

2
2 X ‘ %
—3xy+5y° + 5= h
for some constant 7. Multiplying through by 2 yields the equation i
Oin ‘
» and X2 — 6xy+10y* =k |

where k = 2h is a constant.
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(a) To see if the system is Hamiltonian, we compute

dax + by) d(cx + dy)
7 P —q and — ——— = —d.
0x dy
For these partials to agree, we must have a = —d.
Assuming that d = —a, we want a function H{x, y) such that
oH dy

ifi:fi—x-:ax—{-by and -—-:———):——cx%—ay.
dy dt dx dt

We integrate the second equation with respect to x o see that
¢ 2
H(x,y) = —5x"+axy + o0,

where ¢ (y) represents the terms whose derivative with respect to x are zero.
Using this expression for H (x, y) in the first equation, we obtain

ax + ¢'(y) = ax + by.

In other words, ¢'(y) = by, and we can take ¢ (y) = by?/2. The function

¢ 5 b,
H(x,y)—_——-ix +axy+§y

is a Hamiltonian function for this system if d = —a.

(b) To see if the system is a gradient system, we compute

d(ax + by) _b d(cx +dy) .
dy - ax -

The linear system is a gradient system if b = c.
Assuming that b = ¢, we want a function G(x, y) such that

G dx oG dy
xS thy and o= =oeady

Integrating the first equation with respect to x, we obtain
a 2
Glx,y)=5x"+ bxy + h(y),

where i (y) represents the terms whose derivative with respect to y are zero.
Using this expression for G(x, y) in the second equation, we obtain

bx + K (y) = bx + dy.

Hence, h'(y) = dy, and we can take h(y) = dy?/2. The function

d
Glx,y) = %xz + bxy + Eyz

is the required function if ¢ = b.




Review Exercises for Chapter 5 499

(c) The system is Hamiltonian if d = —4 and gradient if b = ¢ Both conditions are satisfied if the
system has the form
dyY a b
—_= Y.
dt b —a
The eigenvalues of the coefficient matrix are 4 Ja? + b, sothe origin is a saddle if the system
is both Hamiltonian and gradient.
(d) Any matrix
a b

c d
where d # —4@ and b # c gives @ system that is neither Hamiltonian not gradient. (Recall that

poth gradient and Hamiltonian systems cannot have equilibrium points that are spiral sources
or spiral sinks.)

29. (a) Since O represents an angle in this model, we restrict 6 to the interval —7 < g <.
The equilibria must satisfy the equations

cosf = 52
sinf = —s2.
Therefore,
.
tané):——f—:——i—:rl,
cosf s
and consequently g = —arctanl = —7 /4.

To find s, we note that s = cos(=7 /4 =1/ /2. Hence, s = 1/ 42, and the only equilib-

rium point s
©.5) (ﬂ 1
$S = ———_3" .
4" 2

(b) The Jacobian matrix for this system is

sinf cosf

— T3
S S
—cosf —2s

Evaluating at the equilibrium point, we get

o342
___2~1/2 _23/4

The characteristic polynomial of this matrix is

2
+H; {x+(1+\/')

Since

1+2f

— _ 41 +V2) <0




