2. (a) If \(H(x, y) = \sin(xy) \), then

\[
\frac{\partial H}{\partial x} = y \cos(xy)
\]

and so

\[
\frac{dy}{dt} = -\frac{\partial H}{\partial x}.
\]

Similarly,

\[
\frac{\partial H}{\partial y} = x \cos(xy) = \frac{dx}{dt}.
\]

(b) Note that the level sets of \(H \) are the same curves as those of the level sets of \(xy \).

(c) Note that there are many curves of equilibrium points for this system: besides the origin, whenever \(xy = n\pi + \pi/2 \), the vector field vanishes.

3. (a) If \(H(x, y) = x \cos y + y^2 \), then

\[
\frac{\partial H}{\partial x} = \cos y
\]

and so

\[
\frac{dy}{dt} = -\frac{\partial H}{\partial x}.
\]

Similarly,

\[
\frac{\partial H}{\partial y} = -x \sin y + 2y = \frac{dx}{dt}.
\]
If we differentiate $H(x, y)$ with respect to x, we get

$$y + c'(x),$$

which we want to be the negative of $dy/dt = -y$. Hence $c'(x) = 0$, and we pick the antiderivative $c(x) = 0$. A Hamiltonian function is

$$H(x, y) = xy - y^3.$$

12. First we check to see if the partial derivative with respect to x of the first component of the vector field is the negative of the partial derivative with respect to y of the second component. We have

$$\frac{\partial 1}{\partial x} = 0$$

while

$$\frac{\partial y}{\partial y} = -1.$$

Since these are not equal, the system is not Hamiltonian.

13. First we check to see if the partial derivative with respect to x of the first component of the vector field is the negative of the partial derivative with respect to y of the second component. We have

$$\frac{\partial (x \cos y)}{\partial x} = \cos y$$

while

$$-\frac{\partial (-y \cos x)}{\partial y} = \cos x.$$

Since these two are not equal, the system is not Hamiltonian.

14. First note that

$$\frac{\partial F(y)}{\partial x} = 0 = -\frac{\partial G(x)}{\partial y},$$

that is, the partial derivative of the x component of the vector field with respect to x is equal to the negative of the partial derivative of the y component with respect to y. Hence, the system is Hamiltonian. Integrating the x component of the vector field with respect to y yields

$$H(x, y) = \int F(y) \, dy + c$$

where the "constant" c could depend on x. If we differentiate this H with respect to x we get

$$-\frac{\partial H}{\partial x} = -c'(x).$$

Thus we take $c = -\int G(x) \, dx$. A Hamiltonian function is

$$H(x, y) = \int F(y) \, dy - \int G(x) \, dx.$$
16. (a) We first check
\[
\frac{\partial (-yx^2)}{\partial x} = -2xy \neq -\frac{\partial (x + 1)}{\partial y} = 0,
\]
so the system is not Hamiltonian.
(b) If we multiply the vector field by \(1/x^2\), we obtain the new system
\[
\begin{align*}
\frac{dx}{dt} &= -y \\
\frac{dy}{dt} &= \frac{1}{x} + \frac{1}{x^2}.
\end{align*}
\]
As in Exercise 14, this system is Hamiltonian with
\[
H(x, y) = \frac{1}{x} - \ln |x| - \frac{y^2}{2}.
\]

17. Using the technique of Exercise 15, we we multiply the vector field by \(1/(2 - y)\). As in Exercise 14, the resulting system
\[
\begin{align*}
\frac{dx}{dt} &= \frac{1 - y^2}{2 - y} \\
\frac{dy}{dt} &= x
\end{align*}
\]
is Hamiltonian. The Hamiltonian is
\[
\begin{align*}
H(x, y) &= -\frac{x^2}{2} + \int \frac{y^2 - 1}{y - 2} dy \\
&= -\frac{x^2}{2} + \int 2 + y + \frac{3}{y - 2} dy \\
&= -\frac{x^2}{2} + 2y + \frac{y^2}{2} + 3\ln |y - 2|.
\end{align*}
\]
The function
\[
H(x, y) = -\frac{x^2}{2} + 2y + \frac{y^2}{2} + 3\ln |y - 2|
\]
is a conserved quantity for the original system. However, it is not defined on the line \(y = 2\). From the system, we see that this line is a single solution curve that separates the two half-planes, \(y < 2\) and \(y > 2\).

18. (a) We have
\[
\frac{\partial H}{\partial y} = y \quad \text{and} \quad \frac{\partial H}{\partial x} = x^2 - a,
\]
so this system is Hamiltonian with the given function \(H\).
(b) Note that \(dx/dt = 0\) if and only if \(y = 0\) and \(dy/dt = 0\) if and only if \(x = \pm \sqrt{a}\). Consequently if \(a < 0\), then there are no equilibrium points. If \(a = 0\), there is one equilibrium point at \((0, 0)\) and if \(a > 0\), there are two equilibrium points at \(\pm \sqrt{a}, 0\).
(c) The Jacobian matrix is
\[
\begin{pmatrix}
0 & 1 \\
2x & 0
\end{pmatrix},
\]
which, when evaluated at the equilibrium points, becomes
\[
\begin{pmatrix}
0 & 1 \\
\pm 2\sqrt{a} & 0
\end{pmatrix}.
\]
At \((\sqrt{a}, 0)\), the eigenvalues are \(\pm \sqrt{2\sqrt{a}}\) so this equilibrium point is a saddle. At \((-\sqrt{a}, 0)\), the eigenvalues are \(\pm i\sqrt{2\sqrt{a}}\) so this equilibrium point is a center. If \(a = 0\) the eigenvalues are both 0, so this point is a node.

(d) Phase portrait for \(a < 0\)

Phase portrait for \(a = 0\)

Phase portrait for \(a > 0\)

(e) As \(a\) increases toward 0, the phase portrait changes from having no equilibrium points to having a single equilibrium point at \(a = 0\). If \(a > 0\), there is a pair of equilibrium points.

19. First note that this system is Hamiltonian for every value of \(a\). The Hamiltonian function depends on \(a\) and is given by
\[H(x, y) = x^2y + xy^2 - ax.\]
If \(a > 0\), then the system has two saddle equilibrium points on the \(y\)-axis at \((0, \pm \sqrt{a})\). If \(a = 0\), then system has only one equilibrium point at \((0, 0)\). If \(a < 0\), the system again has two saddles, but they are now located at \((\pm 2\sqrt{-3a/3}, \mp \sqrt{-3a/3})\). This corresponds to a change in shape of the graph of \(H\).

20. (a) First note that the system is still Hamiltonian, with Hamiltonian function
\[H(x, y) = \frac{1}{2}y^2 - \frac{1}{2}x^2 + \frac{1}{3}x^3 + ax.\]
The equilibrium points are
\[
\left(\frac{1 \pm \sqrt{1 - 4a}}{2}, 0\right).
\]
Hence there are no equilibrium points if \(a > 1/4\); one equilibrium point if \(a = 1/4\); and two equilibrium points if \(a < 1/4\). A bifurcation occurs at \(a = 1/4\).

(b) The book would never have appeared. Wouldn't that have been awful?