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The x(¢)- and y(¢)-graphs for Y ().

(e) Since the method of eigenvalues and eigenvectors does not give us a second solution that is
linearly independent from Y (¢), we cannot form the general solution.

4 6.) (a) The characteristic polynomial is
' (5= A (=) —36=0,

and therefore the eigenvalues are .1 = —4 and Ap = 9.
(b) To obtain the eigenvectors (x1, y1) for the eigenvalue A1 = —4, we solve the system of equa-
tions

Sx1+4y1 = —4x;
Ox1 = —4y;

and obtain 9x; = —4y1.
Using the same procedure, we see that the eigenvectors (x7, y2) for Ao = 9 must satisfy the

equation yp = x3.
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(d) One eigenvector V1 for A1 is V1 = (4, —9), and one eigenvector V; for A2 is Vo = (1, 1).
Given the eigenvalues and these eigenvectors, we have the two linearly independent solu-

tions
—4t 4 g ot 1
Yit)=e 9 and Yo(®) =e ]
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The x(t)- and y(¢)-graphs for Y (). The (identical) x(¢)- and y(¢)-graphs for Y, (¢).

(e) The general solution to this linear system is

4 1
Y@p:hf“<_9>+mﬂ%(l>.

(a) The characteristic polynomial is

B-M(=N)—4=2%2-31—4=0—-4HOQ+1)=0,

and therefore the eigenvalues are A1 = —1 and Ay = 4.
(b) To obtain the eigenvectors (xy, y1) for the eigenvalue A1 = —1, we solve the system of equa-
tions

3x1 +4y1=—x1
X1 =y

and obtain y; = —x1. :
Using the same procedure, we obtain the eigenvectors (x2, y2) where xp = 4y, for Ay = 4.
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(d) One eigenvector V1 for A1 is V1 = (1, —1), and one eigenvector V5 for Xg isVo =4, 1).
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(e) The general solution to this linear system is

Y(t) = kie ( ? ) + kpe™ ( i >

11. JThe eigenvalues are the roots of the characteristic polynomial, so they are solutions of
(—2=A -2 —4=2*+1-6=0.

-~ Hence, A1 = 2 and X, = —3 are the eigenvalues.
To find the eigenvectors for the eigenvalue A1 = 2, we solve

—2x1 —2y1 =2x1
—2x1 + y1 =21,
S0 y1 = —2x1 is the line of eigenvectofs. In particular, (1, —2) is an eigenvector for A1 = 2.
Similarly, the line of eigenvectors for Ao = —3 is given by x; = 2y;. In particular, (2, 1) is an

eigenvector for Ay = —3.
Given the eigenvalues and these eigenvectors, we have the two linearly independent solutions

Yi() = & < ! ) and Yo(r) = e ( 2 )
-2 1
Y(t) = k1% ( _; ) + kpe 2 ( ? )

(a) Given the initial condition Y(0) = (1, 0), we must solve

(o) -o=n () e(3)

for k1 and k. This vector equation is equivalent to the two scalar equations

The general solution is

ki +2ky =1
—2k1 +ky =0.

Solving these equations, we obtain k1 = 1/5 and k2 = 2/5. Thus, the particular solution is

Y(t):%e”( _; )+%e“3’< ? )

(b) Given the initial condition Y(0) = (0, 1) we must solve

() men( 2)on()
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for k1 and k;. This vector equation is equivalent to the two scalar equations

ki +2ky=0
—2ky +hy=1.
Solving these equations, we obtain k1 = —2/5 and kp = 1/5. Thus, the particular solution is

Y() :'~%e?‘t< _; ) + %E—St < ? )

(¢) The initial condition Y(0) = (1, —2) is an eigenvector for the eigenvalue A1 = 2. Hence, the
solution with this initial condition is

. u 1
Y(t)=e (_2>.

G-=M(=2-2)=0,
and therefore the eigenvalues are A1 = 3 and Ay = —2.
To obtain the eigenvectors (x1, y1) for the eigenvalue A1 = 3, we solve the system of equations

12. The characteristic polynomial is

3x1 =3x1
Xy —2y1 =73y
and obtain
Sy1 = x1.
Therefore, an eigenvector for the eigenvalue A1 = 3is Vi = (5, 1).
Using the same procedure, we obtain the eigenvector Vo = (0, 1) for A, = —2.

The general solution to this linear system is therefore

Y() = ket ( i ) +kpe H ( (1) )

(a) We have Y(0) = (1, 0), so we must find k7 and k3 so that

()2} (1)

This vector equation is equivalent to the simultaneous system of linear equations

Sk1 =1
ki +ky=0.
Solving these equations, we obtain k1 = 1/5 and kp = —1/5. Thus, the particular solution is

Y(t) = 1o ( i )-— te7 ( (1) )
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15) Given any vector Yo = (xg, yo), we have

AY, = a 0O X0\ _ axop —u X0 _ aYo.
0 a Yo ayo Yo

Therefore, every nonzero vector is an eigenvector associated to the eigenvalue a.

The characteristic polynomial of A is

-17.

(@a—1d—-» =0,

and thus the eigenvalues of A are A; = a and Ay = d.
To find the eigenvectors V1 = (x1, y1) associated to A1 = a, we need to solve the equation

AV) =aVy

for all possible vectors V1. Rewritten in terms of components, this equation is equivalent to
axi + by; = ax
dyr =ay1.

Since a # d, the second equation implies that y; = 0. If so, then the first equation is satisfied for
all x;. In other words, the eigenvectors V; associated to the eigenvalue a are the vectors of the form

(x1, 0). _
To find the eigenvectors Vo = (x2, y2) associated to Ay = d, we need to solve the equation

AVy =dVy
for all possible vectors V. Rewritten in terms of components, this equation is equivalent to
axy + by, =dx;
dyy =dys.

The second equation always holds, so the eigenvectors V; are those vectors that satisfy the equation
axy + by, = dxp, which can be rewritten as

by, = (d — a)xs.
These vectors form a line through the origin of slope (d — a)/b.
The characteristic polynomial of B is

22— (@a+dr+ad — b

The roots of this polynomial are

. a+d++/(a+d)?—4(ad —b?)
| 2
a+d+a?+2ad + d? — 4ad + 4b*
' 2
a+d++/(a—d)?+4b?
2
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Since the discriminant D = (a —d)?+4b2 is always nonnegative, the roots A are real. Therefore, the
matrix B has real eigenvalues. If b # 0, then D is positive and hence B has two distinct eigenvalues.
(The only way to have only one eigenvalue is for D = 0).

he characteristic equation is
| (@—2)(=A) —be =22 — a) —be = 0.
Finding the roots via the quadratic formula, we obtain the eigenvalues

a++a?+ 4bc
3 )

Note that these eigenvalues are very different from the case where the matrix is upper triangular (see
Exercise 16). For example, they are not necessarily real numbers because a2 -+ 4bc can be negative.

19. (a) To form the system, we introduce the new dependent variable v = dy/dt. Then

dv d%y dy ’

Et-——ztjz_PE_qy:_PU_QJ’-

Written in matrix form this system where Y = (y, v), we have
dy 0 1
_— = Y.
dt —q —p

O=N(=p—2+qg=2r2+pr+gq.

(b) The characteristic polynomial is

(¢) The roots of this polynomial (the eigenvalues) are

—pPEVp?—4q
5 .

(d) The roots are distinct real numbers if the discriminant D = p?—4qis positive. In other words,
the roots are distinct real numbers if p2 > 4g.

(e) Since g is positive, p% — 4g < p?, so we know that Vpt—d4q < /p? = p. Since the
numerator in the expression for the eigenvalues is —p + 4/ p? —4q, we see that it must be
negative. Since the denominator is positive, the eigenvalues must be negative.

20. (a) The parametersm = 1,k =4,and b = 5 yield the second-order equation

d*y | _dy
— +5=2 44y =0,
dr2+ dt+ y=0

Given v = dy/dt, the corresponding system is

dy _
dr
dv

2V 4y — 50
dt y v

v




