EXERCISES FOR SECTION 2.1

1. In the case where it takes many predators to eat one prey, the constant in the negative effect term of predators on the prey is small. Therefore, (ii) corresponds the system of large prey and small predators. On the other hand, one predator eats many prey for the system of large predators and small prey, and, therefore, the coefficient of negative effect term on predator-prey interaction on the prey is large. Hence, (i) corresponds to the system of small prey and large predators.

2. For (i), the equilibrium points are \(x = y = 0 \) and \(x = 10, y = 0 \). For the latter equilibrium point prey alone exist; there are no predators. For (ii), the equilibrium points are \((0, 0), (0, 15) \), and \((3/5, 30) \). For the latter equilibrium point, both species coexist. For \((0, 15) \), the prey are extinct but the predators survive.

3. Substitution of \(y = 0 \) into the equation for \(dy/dt \) yields \(dy/dt = 0 \) for all \(t \). Therefore, \(y(t) \) is constant, and since \(y(0) = 0, y(t) = 0 \) for all \(t \).

 Note that to verify this assertion rigorously, we need a uniqueness theorem (see Section 2.4).

4. For (i), the prey obey a logistic model. The population tends to the equilibrium point at \(x = 10 \). For (ii), the prey obey an exponential growth model, so the population grows unchecked.

5. Substitution of \(x = 0 \) into the equation for \(dx/dt \) yields \(dx/dt = 0 \) for all \(t \). Therefore, \(x(t) \) is constant, and since \(x(0) = 0, x(t) = 0 \) for all \(t \).

 Note that to verify this assertion rigorously, we need a uniqueness theorem (see Section 2.4).

6. For (i), the predators obey an exponential decay model, so the population tends to 0. For (ii), the predators obey a logistic model. The population tends to the equilibrium point at \(y = 15 \).
7. The population starts with a relatively large rabbit \((R)\) and a relatively small fox \((F)\) population. The rabbit population grows, then the fox population grows while the rabbit population decreases. Next the fox population decreases until both populations are close to zero. Then the rabbit population grows again and the cycle starts over. Each repeat of the cycle is less dramatic (smaller total oscillation) and both populations oscillate toward an equilibrium which is approximately \((R, F) = (1/2, 3/2)\).

8. (a)

(b) Each of the solutions tends to the equilibrium point at \((R, F) = (5/4, 2/3)\). The populations of both species tend to a limit and the species coexist. For curve B, note that the \(F\)-population initially decreases while \(R\) increases. Eventually \(F\) bottoms out and begins to rise. Then \(R\) peaks and begins to fall. Then both populations tend to the limit.

9. By hunting, the number of prey decreases \(\alpha\) units per unit of time. Therefore, the rate of change \(dR/dt\) of the number of prey has the term \(-\alpha\). Only the equation for \(dR/dt\) needs modification.

(i) \(dR/dt = 2R - 1.2RF - \alpha\)

(ii) \(dR/dt = R(2 - R) - 1.2RF - \alpha\)

10. Hunting decreases the number of predators by an amount proportional to the number of predators alive (that is, by a term of the form \(-kF\)), so we have \(dF/dt = -F + 0.9RF - kF\) in each case.

11. Since the second food source is unlimited, if \(R = 0\) and \(k\) is the growth parameter for the predator population, \(F\) obeys an exponential growth model, \(dF/dt = kF\). The only change we have to make is in the rate of \(F\), \(dF/dt\). For both (i) and (ii), \(dF/dt = kF + 0.9RF\).

12. In the absence of prey, the predators would obey a logistic growth law. So we could modify both systems by adding a term of the form \(-kF/N\), where \(k\) is the growth-rate parameter and \(N\) is the carrying capacity of predators. That is, we have \(dF/dt = kF(1 - F/N) + 0.9RF\).