3. (a) The solution with $y(0) = 1/2$ approaches the equilibrium value $y = 1$ from below as t increases. It decreases toward $y = 0$ as t decreases.

4. (a) The solution $y(t)$ with $y(0) = 1/2$ increases with $y(t) \to \infty$ as t increases. As t decreases, $y(t) \to -\infty$.

5. (a) The solution with $y(0) = 1/2$ approaches the equilibrium value $y = 1$ from below as t increases. It decreases toward $y = 0$ as t decreases.

6. (a) The solution $y(t)$ with $y(0) = 1/2$ increases with $y(t) \to \infty$ as t increases. As t decreases, $y(t) \to -\infty$.

7. (a) The solution with $y(0) = 1/2$ approaches the equilibrium value $y = 1$ from below as t increases. It decreases toward $y = 0$ as t decreases.

8. (a) The solution $y(t)$ with $y(0) = 1/2$ increases with $y(t) \to \infty$ as t increases. As t decreases, $y(t) \to -\infty$.
9. (a) \[y \]
(b) The solution \(y(t) \) with \(y(0) = 1/2 \) has \(y(t) \to \infty \) both as \(t \) increases and as \(t \) decreases.

10. (a) \[y \]
(b) The solution \(y(t) \) with \(y(0) = 1/2 \) has \(y(t) \to \infty \) both as \(t \) increases and as \(t \) decreases.

11. (a) On the line \(y = 3 \) in the \(ty \)-plane, all of the slope marks have slope \(-1\).
(b) Because \(f \) is continuous, if \(y \) is close to 3, then \(f(t, y) < 0 \). So any solution close to \(y = 3 \) must be decreasing. Therefore, solutions \(y(t) \) that satisfy \(y(0) < 3 \) can never be larger than 3 for \(t > 0 \), and consequently \(y(t) < 3 \) for all \(t \).

12.

13. The slope field in the \(ty \)-plane is constant along vertical lines.
14. Because \(f \) depends only on \(y \) (the equation is autonomous), the slope field is constant along horizontal lines in the \(ty \)-plane. The roots of \(f \) correspond to equilibrium solutions. If \(f(y) > 0 \), the corresponding lines in the slope field have positive slope. If \(f(y) < 0 \), the corresponding lines in the slope field have negative slope.

15. (a) Note that the slopes are constant along vertical lines—lines along which \(t \) is constant, so the right-hand side of the corresponding equation depends only on \(t \). The only choices are equations (i) and (iv). Because the slopes are negative for \(t > 1 \) and positive for \(t < 1 \), this slope field corresponds to equation (iv).

(b) This slope field has an equilibrium solution corresponding to the line \(y = 1 \), as does equations (ii), (v), (vii), and (viii). Equations (iii), (v), and (viii) are autonomous, and this slope field is not constant along horizontal lines. Consequently, it corresponds to equation (vii).

(c) This slope field is constant along horizontal lines, so it corresponds to an autonomous equation. The autonomous equations are (ii), (v), and (viii). This field does not correspond to equation (v) because it has the equilibrium solution \(y = -1 \). The slopes are negative between \(y = -1 \) and \(y = 1 \). Consequently, this field corresponds to equation (vii).

(d) This slope field depends both on \(y \) and on \(t \), so it can only correspond to equations (iii), (vi), or (vii). It does not correspond to (vii) because it does not have an equilibrium solution at \(y = 1 \). Also, the slopes are positive if \(y > 0 \). Therefore, it must correspond to equation (vi).

16. (a) Because the slope field is constant on vertical lines, the given information is enough to draw the entire slope field.

(b) The solution with initial condition \(y(0) = 2 \) is a vertical translation of the given solution. We only need change the “constant of integration” so that \(y(0) = 2 \).