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IGURE 6.2.3. The oblique
y-coordinate system determin-
| by the eigenvectors v; and vs.
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Critical Points of Linear Systems

We can use the eigenvalue-eigenvector method of Section 5.2 to investigate the crit-
ical point (0, 0) of a linear system

- 9[22

with constant coefficient matrix A. Recall that the eigenvalues A; and A, of A are
the solutions of the characteristic equation

a— A b

> detA-ap=|“"" 7,

=(@-N@d-2)—bc=0.

We assume that (0, 0) is an isolated critical point of the system in (9), so it follows
that the coefficient determinant ad — bc of the system ax + by = 0,cx +dy =0
is nonzero. This implies that A = 0 is nor a solution of (9), and hence that both
eigenvalues of the matrix A are nonzero.

The nature of the isolated critical point (0, 0) then depends on whether the two
nonzero eigenvalues A; and A, of A are

o real and unequal with the same sign;

o real and unequal with opposite signs;

« real and equal;

» complex conjugates with nonzero real part; or
» pure imaginary numbers.

These five cases are discussed separately. In each case the critical point (0, 0) re-
sembles one of those we saw in the examples of Section 6.1—a node (proper or
improper), a saddle point, a spiral point, or a center.

UNEQUAL REAL EIGENVALUES WITH THE SAME SIGN: In this case the ma-
trix A has linearly independent eigenvectors v; and v, and the general solution

x() = [x(@) y(®)]" of (9) takes the form
X(t) = c1vqe

This solution is most simply described in the oblique uv-coordinate system indi-
cated in Fig. 6.2.3, in which the u- and v-axes are determined by the eigenvectors v;
and v,. Then the u Wdinate functions u(t) and v(¢) of the moving point X(z) are
simply its distances from the origin measured in the directions parallel to the vectors
v; and v,, so it follows from Eq. (10) that a trajectory of the system is described by

u(t) = uge™, v(r) = vpe?' an

where ug = u(0) and vo = v(0). If vp = O, then this trajectory lies on the u-
axis, whereas if ug = 0, then it lies on the v-axis. Otherwise—if uo and vg are
both nonzero-—the parametric curve in (11) takes the explicit form v = Cu* where
k = Ay/x; > 0. These solution curves are tangent at (0, 0) to the u-axis if k > 1, to
the v-axis if 0 < k < 1. Thus we have in this case an improper node as in Example
3 of Section 6.1. If A; and A, are both positive, then we see from (10) and (11) that
these solution curves “depart from the origin” as ¢ increases, so (0, 0) is a nodal
source. But if A; and X, are both negative, then these solution curves approach the
origin as ¢ increases, so (0, 0) is a nodal sink.

TERERITRITTT
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Exompie2 (a) The matrix

-1 01 2 3 45
X

e
-5 4 4
25-4-3 2

FIGURE 6.2.4. The improper
nodal source of Example 2.

i MW%%@I

7 3
= 1

A=g [ -3 17]
has eigenvalues A; = 1 and A, = 2 with associated eigenvectors v; = [3 I]T

andvy, =[1 3 ]T. Figure 6.2.4 shows a direction field and typical trajectories of 3
the corresponding linear system x' = Ax. Note that the two eigenvectors point ip
the directions of the linear trajectories. As is typical of an improper node, all other
trajectories are tangent to one of the oblique axes through the origin. In this example
the two unequal real eigenvalues are both positive, so the critical point (0, 0) is an 3

improper nodal source.
-7 =3
= —A =41
B=-A= 8/{/5 —17}

(b) The matrix
has eigenvalues A; = —1 and A, = ~2 with the same associated eigenvector

vi=[3 1] andv, = [1 3 ]T. The new linear system x' = Bx has the same
direction field and trajectories as in Fig. 6.2.4 except with the direction field arrows
now all reversed, so (0, 0) is now an improper nodal sink.

UNEQUAL REAL EIGENVALUES WITH OPPOSITE SIGNS: Here the situatio
is the same as in the previous case, except that A, < 0 < A1 in (11). The trajectories
with ug = 0 or vp = 0 lie on the u- and v-axes through the critical point (0, 0)
Those with ug and vo both nonzero are curves of the explicit form v = Cu*, wher
k = X/A1 < 0. As in the case k < 0 of Example 3 in Section 6.1, the nonlinear
trajectories resemble hyperbolas, and the critical point (0, 0) is therefore an unstabl

~ Example 3.

FIGURE 6.2.5. The saddle
point of Example 3.

The matrix

A=

P Ll

saddle point.
5 =3
3 -5

has eigenvalues A; = 1 and A, = —1 with associated eigenvectors v; = [3 1 ]

andv; = [1 3 ]T. Figure 6.2.5 shows a direction field and typical trajectorie
of the corresponding linear system x' = Ax. Note that the two eigenvectors again’
point in the directions of the linear trajectories. Here k = —1 and the nonlin
trajectories are hyperbolas in the oblique uv-coordinate system, so we have the
saddle point indicated in the figure. Note that the two eigenvectors point in thé
directions of the asymptotes to these hyperbolas.

EQUAL REAL ROOTS: In this case, with A = A; = A, # 0, the characte]
of the critical point (0, 0) depends on whether or not the coefficient matrix A h
two linearly independent eigenvectors v; and v,. If so, then we have oblique %
coordinates as in Fig. 6.2.3, and the trajectories are described by '

u(t) = uge, v(t) = voe (

as in (11). But now k = A,/A; = 1, so the trajectories with uy # 0 are all of-*j
form v = Cu and hence lie on straight lines through the origin. Therefore, (0, 09
a proper node (or star) as illustrated in Fig. 6.1.4, and is a source if A > 0, a
ifa <.
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If the multiple eigenvalue A # 0 has only a single associated eigenvector v;,
then (as we saw in Section 5.4) there nevertheless exists a generalized eigenvector
v, such that (A — AI)v, = v,, and the linear system x’ = Ax has the two linearly
independent solutions

xi(r) =vie" and %) = (vit + vo)e. (13)

We can still use the two vectors v1 and v, to introduce oblique uv-coordinates as in
Fig. 6.2.3. Then it follows from (13) that the coordinate functions u(t) and v(s) of
the moving point x(f) on a trajectory are given by

u(t) = (uo + vor)e, wv(t) = voe*, (14)

where ug = u(0) and vy = v(0). If vy = O then this trajectory lies on the u-axis.
Otherwise we have a nonlinear trajectory with

dv _dvfdr _ AvgeM _ Avg

du~ du/dt  veeM + A(ug + vor)eM g+ A(ug + vot)

We see that dv/du — 0 ast — 00, so it follows that each trajectory is tangent to
the u-axis. Therefore, (0, 0) is an improper node. If A < 0, then we see from (14)
that this node is a sink, but it is a source if A > 0.

_af-11 9
A—S[,—l =5

has the muitiple eigenvalue A = =1 with the single associated eigenvector v, =

[3 1 ]T. It happens that v, = [1 3 ]T is a generalized eigenvector based on
V1, but only the actual eigenvector shows up in a phase portrait for the linear sys-
tem X' = AX. As indicated in Fig. 6.2.6, the eigenvector v; determines the u-axis
through the improper nodal sink (0, 0), this axis being tangent to each of the non-
linear trajectories. |

The matrix

N EXamplé A4‘

COMPLEX CONJUGATE EIGENVALUES: Suppose that the matrix A has eigen-
values A = p +gi and A = p — gi (with p and g both nonzero) having associated
complex conjugate eigenvectors v = a+bi and ¥ = a— bi. Then we saw in Section
g\;-see Eq. (22) there—that the linear system x’ = Ax has the two independent
real-valued solutions '

x1(t) = e’ (acosgt — bsings) and x2(1) = e’ (bcosgr +asingt).  (15)

Thus the components x (¢) and y(2) of any solution x(¢) = ¢;x;(¢) 42X, (1) oscillate
between positive and negative values as 7 increases, so the critical point (0, 0) is a
spiral point as in Example 5 of Section 6.1. If the real part p of the eigenvalues
is negative, then it is clear from (15) that x(r) — 0 as — 400, so the origin is a
spiral sink. But if p is positive, then the critical point is a spiral source.

_ Example 5 [JETS—e
| _1[ =10 15
| A= [ -15 8 ]

has the complex conjugate eigenvalues A= % +3i with negative real part, so (0, 0)

is a spiral sink. Figure 6.2.7 shows a direction field and a typical spiral trajectory
approaching the origin as 1 — +o0. n
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~ Example 6

X

FIGURE 6.2.7. The spiral sink of Example 5.

PURE IMAGINARY EIGENVALUES: If the matrix A has conjugate imaginary
eigenvalues A = gi and A = —qi with associated complex conjugate eigenvec- -
tors v = a+bi and ¥ = a — bi, then (15) with p = 0 gives the independent
solutions l\

x;(f) = acosqt —bsingr and x,(¢) =bcosgr + asingt (16)7
of the linear system X' = Ax. Just as in Example 4 of Section 6.1, it follows that*

any solution X(¢) = ¢1xy(2) + c2X,(¢) describes an ellipse centered at the origin in ;
the xy-plane. Hence (0, 0) is a stable center in this case.

The matrix

-9 15

=1

A=y [ ~15 9 ]

has the pure imaginary conjugate eigenvalues A = =+3i, and therefore 0,0) is

stable center. Figure 6.2.8 shows a direction field and typical elliptical trajectorie:
enclosing the critical point.

Real, unequal, same sign Improper node
Real, unequal, opposite sign Saddle point
Real and equal Proper or improper no
Complex conjugate Spiral point
Pure imaginary ' Center
FIGURE 6.2.8. The stable FIGURE 6.2.9. Classification of the critical point
center of Example 6. ’ (0, 0) of the two-dimensional system X’ = AX.

For the two-dimensional linear system x' = Ax with detA # 0, the table
Fig. 6.2.9 lists the type of critical point at (0, 0) found in the five cases discuss
here, according to the nature of the eigenvalues A; and ), of the coefficient matrix
Our discussion of the various cases shows that the stability of the critical point (
is determined by the signs of the real parts of these eigenvalues, as summariz
Theorem 1. Note that if A; and A, are real, then they are themselves their real p



ll:q“\o
. py=r+si

/ou2¥r—si
Ay=—qi ¢

FFIGURE 6.2.10. The effects of

gperturbation of pure imaginary
 roots.

My Complex
conjugate
roots

By Ay=2, Ha

iétinct’
K20 real roots

. FIGURE 6.2.11. The effects of

3

perturbation of real equal roots.
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THEOREM 1:

Let ) and A, be the eigenvalues of the coefficient matrix A of the two-dimensional
linear system

d

——;:ax—i—by,

J Qamn
ay

2L = d

7 cx +dy

with ad — bc s 0. Then the critical point (0, 0) is

1. Asymptotically stable if the real parts of A; and A, are both negative;

2. Stable but not asymptotically stable if the real parts of A; and A; are both zero
(so that A, Ay = %q1);
3. Unstable if either A; or A, has a positive real part. A

1t is worthwhile to consider the effect of small perturbations in the coefficients
a, b, c, and d of the linear system in (17), which result in small perturbations of
the eigenvalues A, and A,. If these perturbations are sufficiently small, then positive
real parts (of A; and ),) remain positive and negative real parts remain negative.
Hence an asymptoticaily stable critical point remains asymptotically stable and an
unstable critical point remains unstable. Part 2 of Theorem 1 is therefore the only
case in which arbitrarily small perturbations can affect the stability of the critical
point (0, 0). In this case pure imaginary roots Aj, Ay = £qi of the characteristic
equation can be changed to nearby complex 1oots i1, 2 = I & si, with r either
positive or negative (see Fig. 6.2.10). Consequently, a small perturbation of the
coefficients of the linear system in (7) can change a stable center to a spiral point
that is either unstable or asymptotically stable.

There is one other exceptional case in which the type, though not the stability,
of the critical point (0, 0) can be altered by a small perturbation of its coefficients.
This is the case with A; = Az, equal roots that (under a small perturbation of the
coefficients) can split into two roots p1 and 2, which are either complex conjugates
or unequal real roots (see Fig. 6.2.11). In either case, the sign of the real parts of the
roots is preserved, so the stability of the critical point is unaltered. Its nature may
change, however; the table in Fig. 6.2.9 shows that a node with A; = A can either
remain a node (if 1 and u, are real) or change to 2 spiral point (if p1 and w, are
complex conjugates).

Suppose that the linear system in (17) is used to model a physical situation. It
is unlikely that the coefficients in (17) can be measured with total accuracy, so let
the unknown precise linear model be

d
E—; =a*x + by,
(a7
W _ sria
—_— X .
di Y

If the coefficients in (17) are sufficiently close to those in (17%), it then follows from
the discussion in the preceding paragraph that the origin (0, 0) is an asymptotically
stable critical point for (17) if it is an asymptotically stable critical point for (17%),
and is an unstable critical point for (17) if it is an unstable critical point for (17%).




Thus in this case the approximate model in (17) and the precise model in (17+

predict the same qualitative behavior (with Tespect to asymptotic stability vergy
instability).

N

N

Almost Linear Systems

We now return to the almost linear system

d
E;ﬁ:ax+by+r(x,y), /

d
2?-=CX+dy+S(x,y)

having (0, 0) as an isolated critical point with ad — pe # 0. Theorem 2, which we
State without proof, essentially implies that—with regard to the type and stability of
the critical point (0, 0)—the effect of the small nonlinear terms r(x, y) and §(x, y)
is equivalent to the effect of a small perturbation in the coefficients of the associated
linear system in 17).

THEOREM 2: |

Let A; and A, be the eigenvalues of the coefficient matrix of the linear System i
(17) associated with the almost linear system in (18). Then

2. If .; and A, are pure imaginary, then (0, 0) is either a center or a spiral point,
and may be either asymptotically stable, stable, or unstable,

summarizes the situation.

An important consequence of the classification of cases in Theorem 2 is tha
a critical point of an almost linear system is asymprotically stable if it is an asymp
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M<h <O Stable improper node

A=Ay <0 Stable node or spiral point

M <0<y Unstable saddle point

AM=A>0 _ Unstable node or spiral point

A >A >0 Unstable improper node

A, Ay=axbi (a<0) Stable spiral point

AMyAa=axbi (a>0) Unstable spiral point

Ay, Ay = kbi Stable or unstable, center or spiral point

FIGURE 6.2.12. Classification of critical points of an almost linear system.

(Il WA  Determine the type and stability of the critical point (0, 0) of the almost linear
system

d

-dft5=4x+2y+2x2—3y2,

J (19)
Yy

=L = 4x — 3y + Txy.

py X y -+ /xy

Solution The characteristic equation for the associated linear system (obtained simply by
deleting the quadratic terms in (19)) is

(4—A)(—3—A)—8#()»-5)(A+4)=0,

so the eigenvalues A; = 5 and A, = —4 are real, unequal, and have opposite signs.
By our discussion of this case we know that (0, 0) is an unstable saddle point of
the linear system, and hence by Part 3 of Theorem 2, it is also an unstable sad-
dle point of the almost linear system in (19). The trajectories of the linear system
near (0, 0) are shown in Fig. 6.2.13, and those of the nonlinear system in (19) are
shown in Fig. 6.2.14. Figure 6.2.15 shows a phase portrait of the nonlinear sys-
tem in (19) from a “wider view.” In addition to the saddle point at (0, 0), there are
spiral points near the points (0.279, 1.065) and (0.933, —1.057), and a node near
(—2.354, —0.483). ]

: L \ UL T 1 : T 7T T T 1
04r \_/— 04r \\/
0.2 \-7 02 7/// \%
~ 0.0 / £ / ~ 0.0 7 yd
-0.2 7%—\ 02— .
04—\ ] ~04 T\ 5
m N \g LoD
-04 -02 00 02 04 -04 -02 00 02 04
X X
FIGURE 6.2.13. Trajectories of FIGURE 6.2.14, Trajectories of FIGURE 6.2.15. Phase
the linearized system of Example the original almost linear system portrait for the almost linear

7. of Example 7. system in Eq. (19).
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We have seen that the system x’ = f(x, y), y'
point (xo, yo) transforms via the substitution x = y
uv-system with corresponding critical point (0, 0
coefficient matrix J is the J acobian in (8) of the
sequently we need not carry out the substitution
directly to calculate the eigenvalues of J prepara

= g(x, y) with isolated Critica
+X0, Yy = v+yytoan equivalen
) and linearization o’ = Ju, whose
functions f and 8 at (xo, yp). Con.
explicitly; instead, we can proceeq
tory to application of Theorem 2.

/
Determine the type and stability of the critical point (4, 3/ of the almost linegy
system

Example 8

21’; =33~ 10x — 3y 4+ x2,

(20),
D o 184 6x42y—x
dr Yo '

Solution  With S, y) =33 - 10x — 3

y+x2,g(x,y)=—-18+6x+2y—xyandx0=4f
Yo = 3 we have

3
)
’g
L
g

3 -2

J(x’y)=[~(150&+y2x 2:3)(]’ “ J(4’3)=[-2 -3].

The associated linear system

—— = ~2u - 3y,

E:Bu—Zv

linear system in.(21), and Fig. 6.2.17 shows how this spiral point fits into the phas
portrait for the original almost linear system in (2

FIGURE 6.2.16. Spiral trajectories
of the linear system in Eq. (21).
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e lems 1 through 10, apply Theorem 1 to determine the
7 the critical point (0, 0) and whether it is asymiotically
stable, or unstable. Verify your conclusion by using a
ter system or graphing calculator to construct a phase

it for the given system.

j=—2x+y, %y;-:x-zy
—£=4x-—y, %=2x+y
‘ :%:;:—}—2)1, %:2):-%‘)’
j%§=3x+y, %=5x—y

dy -
x:x—2y, %=2x—3y

dt 1
’%:5):—3)’, fld—};-=3x——y
%:3):——2)’, %=4x—y
%:—-—x—3y, %:6):—5)7
%:2}:—2)}, fld—t-=4x—2y
%;f:x—2y, %=5x—y

Each of the systems in Problems 11 through 18 has a single

tical point (xo, Yo). Apply Theorem 2 to classify this critical
soint as to type and stability. Verify your conclusion by using
% computer system or graphing calculator to construct a phase

dy
, — =x -2y, —=3x-—4y—
dt x =2y dt x y=2

dx dy

o — =z X - -— B 4 1
o x ’%y 8, b x +4y+10
A _ o 2, Y _ay_2y-2
Tdt YUEs a T 4
dx dy

e = -7, ==3x-y-5
dt T+y dt x=J

dx dy

== , Y osx—3y-2

dt x=y dt x y

S =x=-2y41, == 3y —

'R x =2y ’n x+3y-9
dx dy

LY 5y, S =x-—y-
ar y_ ar 7Y 3
dx dy

. e = 4x — 5 , ——=5x—-4
r x—5y+3 . Sx —4y+6

In Problems 19 through 28, investigate the type of the criti-
cal point (0, 0) of the given almost linear system. Verify your
conclusion by using a computer system or graphing calculator
to construct a phase portrait. Also, describe the approximate

locations and apparent types of any other critical points that
are visible in your figure. Feel free to investigate these addi-
tional critical points; you can use the computational methods
discussed in the application material for this section.

dx dy

19, — =x-— , —=4x—-6y—

9 'R x — 3y +2xy T x — 6y —xy

20 d-—x--—_éx—Sy—¥—)c2 D —y4y?

T odt Codt
dx dy

21, — = 2 2 = =2x—2y—
o x 42y +x°+y5, I 2x — 2y — 3xy
dx dy

2. — = 4y — xy?, ——=2x-— 2

2 o x +4y — xy°, T X —y+x°y
dx dy

23. e = DX — 3, L —~4x ~6 4

3 T Sy +=x o x ~6y+y
d d

2. £=5x—3y+y(x2+y2), %=5"+y(x2+y2)
dx dy

25, =2 —x —2y+3xy, —=2x-3 —x2—y?
T x —2y+3xy T y—x"—y
d d

26. d—):=3x——2y—x2—-y2, £=2x——y—3xy
dx ' dy

27. 2L —x - a_y2 L ox - 4_ 2

7 'R x—y+x" =Yy i y+y—x
d d

28. E§=3x——y+x3+y3, —%:13x—3y+3xy

In Problems 29 through 32, find all critical points of the given
system, and investigate the type and stability of each. Verify
your conclusions by means of a phase portrait constructed us-
ing a computer system or graphing calculator.

dx dy

29'E;=x_y’ E?zxz__y
30.%::)7—1, %:Jﬂ—y
31.%)-:-=y2~1, %=xs,y
32. %:xy—z %:x——2y

Bifurcations

The term bifurcation generally refers to something “splitting
apart.” With regard to differential equations or systems involv-
ing a parameter, it refers to abrupt changes in the character of
the solutions as the parameter is changed continuously. Prob-
lems 33 through 36 illustrate sensitive cases in which small
perturbations in the coefficients of a linear or almost linear
system can change the type or stability (or both) of a critical
point.




