Differential Equations

Math 341 Fall 2008
MWF 2:30-3:25pm Fowler 307
(C)2008 Ron Buckmire
http://faculty.oxy.edu/ron/math/341/08/

Worksheet 28: Wednesday November 12

TITLE The Laplace Transform and The Heaviside Function
CURRENT READING Blanchard, 6.2

Homework Assignments due Monday November 17

Section 6.1: 2, 3, 4, 6, 7, 8, 12, 13, 16, 17.
Section 6.2: 1, 2, 3, 5, 8, 16.

SUMMARY

We shall continue our analysis of Laplace Transforms by considering discontinuous functions.

1. Translation in t

DEFINITION: Heaviside function
The unit step function or Heaviside function $\mathcal{H}(t)$ is defined to be $\mathbf{0}$ when its argument is less than zero and $\mathbf{1}$ when its argument is greater than or equal to zero. Generally, it is written as \mathcal{H}_{a} or $\mathcal{H}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}$
NOTE: Blanchard, Devaney \& Hall uses the notation $u_{a}(t)$ for $\mathcal{H}(t-a)$.

Exercise

Sketch a picture of $u_{a}(t)$ in the space below. Is this function piecewise continuous? (Why do we care?) What is the definition of "piecewise continuous"?

Let's show that $\mathcal{L}[\mathcal{H}(t-a)]=\frac{e^{-a s}}{s}$

GroupWork

Confirm that $f_{1}(t)= \begin{cases}g(t), & 0 \leq t<a \\ h(t), & t \geq a\end{cases}$
can be written as $f_{1}(t)=g(t)-g(t) \mathcal{H}(t-a)+h(t) \mathcal{H}(t-a)$ or $f_{1}(t)=g(t)+\mathcal{H}_{a}(t)(h(t)-g(t))$

How would you combine Heaviside functions to represent the following function?
$f_{2}(t)=\left\{\begin{aligned} 0, & 0 \leq t<a \\ g(t), & a \leq t<b \\ 0, & t \geq b\end{aligned}\right.$

This kind of function $f_{2}(t)$ is an example of an interval function, and is denoted $u_{a b}(t)$.
$u_{a b}(t)=1$ if $a<t<b$ and 0 otherwise.
EXAMPLE
Blanchard, Devaney \& Hall, page 580, \#15. Suppopse $a \geq 0$. Find the general solution of $\frac{d y}{d t}=-y+u_{a}(t)$

THEOREM: Second Translation Theorem

If $F(s)=\mathcal{L}[f(t)]$ and $a>0$ is any positive real number, then $\mathcal{L}[f(t-a) \mathcal{H}(t-a)]=e^{-a s} F(s)$.
It directly follows then that $\mathcal{L}[\mathcal{H}(t-a)]=\frac{e^{-a s}}{s}$.

Corollary

$\mathcal{L}^{-1}\left[e^{-a s} F(s)\right]=f(t-a) \mathcal{H}(t-a)$

THEOREM: Alternate form of the Second Translation Theorem

It can be annoying to try and get the function which is multiplying the Heaviside function into the form $f(t-a)$ for use in the previous version of the Second Translation Theorem so a more useful results is: $\mathcal{L}[g(t) \mathcal{H}(t-a)]=e^{-a s} \mathcal{L}[g(t+a)]$

2. Translation in s

THEOREM: First Translation Theorem
If $F(s)=\mathcal{L}[f(t)]$ and a is any real number, then $\mathcal{L}\left[e^{a t} f(t)=F(s-a)\right.$. Sometimes the notation $\mathcal{L}\left[e^{a t} f(t)\right]=\left.\mathcal{L}[f(t)]\right|_{s \rightarrow s-a}$ is used.

Corollary

The inverse of the First Translation Theorem can be written as $\mathcal{L}^{-1}[F(s-a)]=e^{a t} f(t)$.
Exercise Given that $\frac{2 s+5}{(s-3)^{2}}=\frac{2}{s-3}+\frac{11}{(s-3)^{2}}$, compute $\mathcal{L}^{-1}\left[\frac{2 s+5}{(s-3)^{2}}\right]$. (HINT: recall that $\mathcal{L}^{-1}\left[\frac{1}{s^{2}}\right]=t$)

EXAMPLE Compute $\mathcal{L}^{-1}\left[\frac{s / 2+5 / 3}{s^{2}+4 s+6}\right]$

EXAMPLE Zill, Example 3, page 295. Let's use Laplace Transforms to show that the solution of $y^{\prime \prime}-6 y^{\prime}+9 y=t^{2} e^{3 t}, \quad y(0)=2, \quad y^{\prime}(0)=17$ is $y(t)=2 e^{3 t}+11 t e^{3 t}+\frac{1}{12} t^{4} e^{3 t}$.

