Differential Equations

Math 341 Fall 2008 © 2008 Ron Buckmire

MWF 2:30-3:25pm Fowler 307 http://faculty.oxy.edu/ron/math/341/08/

Worksheet 27: Monday November 10

TITLE Introducing The Laplace Transform

CURRENT READING Blanchard, 6.1

Homework Assignments due Monday November 17

Section 6.1: 2, 3, 4, 6, 7, 8, 12, 13, 16, 17.

Section 6.2: 1, 2, 3, 5, 8, 16.

SUMMARY

We introduce a new kind of operator, an integral operator, called the Laplace Transform, which can be used to solve differential equations.

1. Introducing The Laplace Transform

DEFINITION: Integral Transform

If a function f(t) is defined on $[0,\infty)$ then we can define an integral transform to be the improper integral $F(s) = \int_0^\infty K(s,t)f(t) dt$. If the improper integral converges then we say that F(s) is the integral transform of f(t). The function K(s,t) is called the **kernel** of the transform. When $K(s,t) = e^{-st}$ the transform is called **the Laplace Transform**.

DEFINITION: Laplace Transform

Let f(t) be a function defined on $t \geq 0$. The Laplace Transform of f(t) is defined as

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

(Note the use of capital letters for the transformed function and the lower-case letter for the input function.)

EXAMPLE Let's show that
$$\mathcal{L}[1] = \frac{1}{s}, s > 0$$

Exercise

 $\overline{\text{Compute } \mathcal{L}[t]}.$

2. Linearity Property of The Laplace Transform

 \mathcal{L} is a linear operator, in other words $\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)]$

EXAMPLE Let's prove the Laplace Transform possesses the linearity property.

Q: Does every function have a Laplace Transform?

A: Hell, no! (i.e. t^{-1} , e^{t^2} etc do not)

DEFINITION: exponential order

A function f is said to be of **exponential order** c if there exist constants c, M > 0, T > 0 such that $|f(t)| \leq Me^{ct}$ for all t > T.

Basically this is saying that in order for f(t) to have a Laplace Transform then in a race between |f(t)| and e^{ct} as $t \to \infty$ then e^{ct} must approach its limit first, i.e. $\lim_{t \to \infty} \frac{f(t)}{e^{ct}} = 0$.

THEOREM

If f is piecewise continuous on $[0, \infty)$ and of exponential order c, then $F(s) = \mathcal{L}[f(t)]$ exists for s > c and $\lim_{s \to \infty} F(s) = 0$

This result means that there are functions that clearly can NOT BE Laplace Transforms. These would be functions who do not satisfy the conclusion of the above theorem.

GROUPWORK

Which of the following functions can NOT be Laplace Transforms? Which of the following MIGHT be Laplace Transforms?

(a)
$$\frac{s}{s+1}$$

(b)
$$\frac{s}{s^2+1}$$

(c)
$$\frac{s^2}{s+1}$$

(d)
$$s^2 + 1$$

3. Transforming A Derivative

EXAMPLE We can show that $\mathcal{L}[f'(t)] = sF(s) - f(0)$

THEOREM
If $f, f', f'', f^{(n-1)}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and of exponential order c and if $f^{(n)}$ is piecewise continuous on $[0,\infty)$, then $\mathcal{L}[f^{(n)}(t)] = s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$

4. Using Transforms To Solve Differential Equations

EXAMPLE Blanchard, Devaney & Hall, page 571, #15. Use the Laplace Transform to solve the initial value problem $\frac{dy}{dt} = -y + e^{-2t}$, y(0) = 2

5. The Inverse Laplace Transform

DEFINITION: Inverse Laplace Transform

If F(s) represents the Laplace Transform of a function f(t) such that $\mathcal{L}[f(t)] = F(s)$ then the Inverse Laplace Transform of F(s) is f(t), i.e. $\mathcal{L}^{-1}[F(s)] = f(t)$.

			If of $\Gamma(s)$ is $J(t)$, i.e. $\mathcal{L} = [\Gamma(s)] = J$		
Laplace Transforms			Inverse Laplace Transforms		
f(t)	$F(s) = \mathcal{L}[f(t)]$		F(s)	$f(t) = \mathcal{L}^{-1}[F(s)]$	
1	$\frac{1}{s}$		$\frac{1}{s}$	1	
t^n	$\frac{n!}{s^{n+1}}$		$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!}$	
e^{at}	$\frac{1}{s-a}$		$\frac{1}{s-a}$	e^{at}	
$\sin(kt)$	$\frac{k}{s^2 + k^2}$		$\frac{k}{s^2 + k^2}$	$\sin(kt)$	
$\cos(kt)$	$\frac{s}{s^2 + k^2}$		$\frac{s}{s^2 + k^2}$	$\cos(kt)$	
$\sinh(kt)$	$\frac{k}{s^2 - k^2}$		$\frac{k}{s^2 - k^2}$	$\sinh(kt)$	
$\cosh(kt)$	$\frac{s}{s^2 - k^2}$		$\frac{s}{s^2 - k^2}$	$\cosh(kt)$	
$\frac{dg}{dt}$	sG(s) - g(0)		sG(s) - g(0)	$\frac{dg}{dt}$	

Exercise
Compute $\mathcal{L}^{-1}\left[\frac{1}{s^5}\right]$ and $\mathcal{L}^{-1}\left[\frac{1}{s^2+7}\right]$

EXAMPLE

Let's show that $\mathcal{L}^{-1}\left[\frac{-2s+6}{s^2+4}\right] = -2\cos(2t) + 3\sin(2t)$