Differential Equations

Math 341 Fall 2008 ©2008 Ron Buckmire MWF 2:30-3:25pm Fowler 307 http://faculty.oxy.edu/ron/math/341/08/

Worksheet 21: Friday October 24

TITLE The Trace-Determinant Plane **CURRENT READING** Blanchard, 3.7

Homework Assignments due Friday October 31

Section 3.7: 1, 6. Section 5.1: 3, 4, 5, 18, 21. Section 5.2: 3, 4, 16.

SUMMARY

We shall summarize all the possible equilibria one can get with a 2x2 linear system of ODEs into one big picture!

1. Summarizing The Possibilities

Given a system of linear ODEs with associated matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ the characteristic polynomial is $(a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + ad - bc = \lambda^2 - tr(A)\lambda + det(A) = 0.$

GROUPWORK

Your goal is to match the case # in the left column with the description of its critical point on the right (the list now is jumbled).

CASE 1: Real λ , $\lambda_1\lambda_2 < 0$ **CASE 2**: Real λ , $\lambda_1\&\lambda_2 < 0$ **CASE 3**: Real λ , $\lambda_1\&\lambda_2 > 0$ **CASE 4**: Real λ , $\lambda_1 = \lambda_2 > 0$ **CASE 5**: Real λ , $\lambda_1 = \lambda_2 < 0$ **CASE 6**: Complex λ , Re(λ) > 0 **CASE 7**: Complex λ , Re(λ) < 0 **CASE 8**: Complex λ , Re(λ) = 0 A Center
B Spiral Source
C (Stable) Node
D(Unstable) Node
E Saddle
F Spiral Sink
G Sink
H Source

Run the CD-Rom from our textbook and select LinearPhasePortaits. Use the slide bars to obtain different values of a, b, c and d and the different kinds of eigenvalues recorded above in the Cases. Record your results in the table below.

CASE $\#$	а	b	с	d	λ_1	λ_2	Description
1							
2							
3							
4							
5							
6							
7							
8							

For more details, see the handout from Edwards and Penney, *Differential Equations*, 3rd Edition, Prentice Hall: 2004.

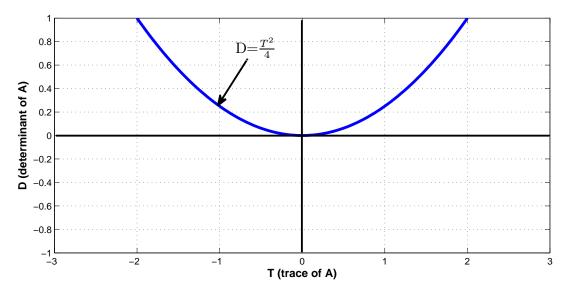
2. The Trace-Determinant Plane

Recall that the eigenvalues of a 2x2 matrix are given by the roots of the polynomial $p(\lambda) = \lambda^2 - \operatorname{tr}(A) + \det(A) = 0.$

It's also true that the trace of A, denoted tr(A) is equal to the **sum** of the eigenvalues $\lambda_1 + \lambda_2$. Let's use the symbol T for tr(A). The determinant of A, denoted det(A) is equal to the **product** of the eigenvalues $\lambda_1 \lambda_2$. Let's use the symbol D for det(A).

Then we know that the eigenvalues are given by the solutions to $\lambda^2 - T\lambda + D = 0$, or $\lambda = \frac{T \pm \sqrt{T^2 - 4D}}{2}$.

In other words, the condition on whether we will have real, complex or repeated eigenvalues depends on the behavior of the discriminant $\Gamma = T^2 - 4D$. See the figure drawn below. This is known as the **Trace-Determinant Plane**



This graph is an example of a parameter plane. As the matrix A changes it has different values of T and D and the linear system $\frac{d\vec{x}}{dt} = A\vec{x}$ corresponding to that matrix will be located at a different location in (T, D)-space.

Exercise

(1) What kind of phase portraits will exist in (T, D)-space along the D axis?

(2) What about the T-axis?

(3) What kind of phase portraits occur along the curve $D = \frac{T^2}{4}$?

(4) What happens as one moves from the region just above the *T*-axis (D > 0) to just below the *T*-axis (D > 0)? Does it matter if T >) or T < 0?

(5) What kinds of solutions exist in the region above the parabola $D = \frac{T^2}{4}$?