Differential Equations

Worksheet 19: Monday October 20

TITLE Linear Systems with Repeated Eigenvalues
CURRENT READING Blanchard, 3.5

Homework Assignments due Friday October 27

Section 3.5: 3, 4, 7, 8.
Section 3.6: 1, 2, 3, 4.

SUMMARY

We'll continue to explore the various scenarios that occur with linear systems of ODEs. This time dealing with those that possess repeated eigenvalues. This will involve the introduction of a new concepts, the Generalized Eigenvector. We will also review some important concepts from Linear Algebra, such as the Cayley-Hamilton Theorem.

1. Repeated Eigenvalues

Given a system of linear ODEs with associated matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ the characteristic polynomial is $p(\lambda)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-\operatorname{tr}(\mathrm{A}) \lambda+\operatorname{det}(\mathrm{A})=0$.
Previously we showed that the condition for repeated eigenvalues was $(a-d)^{2}=-4 b c$. In this case there will be only one solution to the quadratic equation, i.e. repeated eigenvalues equal to $\lambda=\frac{(a+d)}{2}$.
When there are two eiegenvalues and eigenvectors the general solution to $\frac{d \vec{x}}{d t}=A \vec{x}$ is $\vec{x}=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}$ where $A \vec{v}_{1}=\lambda_{1} \vec{v}_{1}$ and $A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}$, i.e \vec{v}_{1} and \vec{v}_{2} are eigenvectors corresponding to eigenvalues λ_{1} and λ_{2}.

The Easy Case

Q: What do we do if our one eigenvalue has two eigenvectors? (Is this even possible?)
A: As long as we have two eiegenvectors we can use the above formula for the general solution. In this case the problem is even simpler because if the eigenspace is 2 dimensional then every vector in \mathbb{R}^{2} is an eigenvector so the easiest choice is $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. This situation is possible if the matrix has the form $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{1}\end{array}\right]$.

The Hard Case

Q: So what do we do if we only have one eigenvalue λ (and only one eigenvector \vec{v}), i.e. $\vec{x}_{1}(t)=e^{\lambda t} \vec{v}$?
A: We need to find another vector function $\vec{x}_{2}(t)$ that is linearly independent to $\vec{x}_{1}(t)$ at some point t.
The answer turns out to be $\vec{x}_{2}(t)=e^{\lambda t}(\vec{w}+t \vec{v})$ where $(A-\lambda \mathcal{I}) \vec{w}=\vec{v}$. In this formula \vec{v} is an eigenvector of A and \vec{w} is a generalized eigenvector of rank 2 .

DEFINITION: generalized eigenvector

An eigenvector \vec{w} associated with λ such that $(A-\lambda \mathcal{I})^{r} \vec{w}=\overrightarrow{0}$ but $(A-\lambda \mathcal{I})^{r-1} \vec{w} \neq \overrightarrow{0}$ is called a generalized eigenvector of rank \mathbf{r}.

PROOF

Let's confirm that $\vec{x}(t)=e^{\lambda t}(\vec{w}+t \vec{v})$ is another solution to the ODE.

$$
\begin{aligned}
\frac{d \vec{x}}{d t} & =A \vec{x} \\
\frac{d\left[e^{\lambda t}(\vec{w}+t \vec{v})\right]}{d t} & =A\left[e^{\lambda t}(\vec{w}+t \vec{v})\right] \\
\left.\lambda e^{\lambda t}(\vec{w}+t \vec{v})\right]+e^{\lambda t} \vec{v} & =e^{\lambda t}[A \vec{w}+A \vec{v} t] \\
e^{\lambda t}(\lambda \vec{w}+\vec{v})+t e^{\lambda t} \lambda \vec{v} & =e^{\lambda t}(A \vec{w})+(A \vec{v}) t e^{\lambda t}
\end{aligned}
$$

Equating the $e^{\lambda t}$ terms produces the equation $\lambda \vec{w}+\vec{v}=A \vec{w}$, i.e. $\vec{v}=A \vec{w}-\lambda \vec{w}=(A-\lambda \mathcal{I}) \vec{w}$ Equating the $t e^{\lambda t}$ terms produces the equation $\lambda \vec{v}=A \vec{v}$
So, if we choose \vec{v} and \vec{w} to have these properties then $\vec{x}(t)=e^{\lambda t}(\vec{w}+t \vec{v})$ will solve $\frac{d \vec{x}}{d t}=A \vec{x}$. Yay! The general solution will be $\vec{x}=c_{1} e^{\lambda t} \vec{v}+c_{2} e^{\lambda t}(\vec{w}+t \vec{v})$.

RECALL

The Cayley-Hamilton Theorem states that a $n \times n$ matrix A satisfies its own characteristic polynomial. In other words, given $p(\lambda)=\operatorname{det}(A-\lambda \mathcal{I})=0, p(A)=\mathcal{O}$ where \mathcal{I} is the $n \times n$ identity matrix and \mathcal{O} is the $n \times n$ zero matrix.

Since we know there is only one (repeated) eigenvalue λ, we know that the characteristic polynomial has the form $p(x)=(x-\lambda)^{2}=0$ which means that $p(A)=(A-\lambda \mathcal{I})^{2}=\mathcal{O}$.

$$
\begin{aligned}
(A-\lambda \mathcal{I})^{2} & =\mathcal{O} \\
(A-\lambda \mathcal{I})^{2} \vec{w} & =\mathcal{O} \vec{w} \quad \text { (From the Cayley-Hamilton Theorem) } \\
(A-\lambda \mathcal{I})[(A-\lambda \mathcal{I}) \vec{w}] & =\overrightarrow{0} \quad(\text { Group terms and name the bracketed term } \vec{v}) \\
(A-\lambda \mathcal{I}) \vec{v} & =\overrightarrow{0} \quad \text { (Either } \vec{v}=\overrightarrow{0} \text { or it is an eigenvector of } A \text { associated with } \lambda)
\end{aligned}
$$

RECALL

The definition of an eigenvector is a vector \vec{x} which lies in the nullspace of $A-\lambda \mathcal{I}$ (also known as the eigenspace $\left.E_{\lambda}\right)$, i.e. it solves the equation $(A-\lambda \mathcal{I}) \vec{x}=\overrightarrow{0}$.
So from the Cayley-Hamilton Theorem we know that the vector $(A-\lambda \mathcal{I}) \vec{w}$ lies in the onedimensional eigenspace E_{λ}, i.e. it must be a scalar multiple of the non-zero eigenvector \vec{v}.
We still do not know the exact value of vector \vec{w} but we can use the above information to compute it by solving the linear system $(A-\lambda \mathcal{I}) \vec{w}=\vec{v}$.

Exercise

Given $A=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right]$ find the eigenvalue(s) and eigenvector(s) of A and confirm that this matrix satisfies the Cayley-Hamilton Theorem.

EXAMPLE
We'll show that $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}-1 & -1 \\ 1 & -3\end{array}\right] \vec{x}$ has the general solution $\vec{x}(t)=c_{1} e^{-2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+$ $c_{2} e^{-2 t}\left(\left[\begin{array}{c}0 \\ -1\end{array}\right]+t\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.

