Differential Equations

Math 341 Fall 2008
MWF 2:30-3:25pm Fowler 307
(C) 2008 Ron Buckmire

Worksheet 9: Friday September 19

TITLE Integrating Factors
CURRENT READING Blanchard, 1.9

Homework Assignments due Friday September 26

Section 1.9: 4, 5, 9, 12, 19.
Chapter 1 Review: 3, 4, 6, 10, 11, 12, 29, 47.
Section 2.1: 1, 2, 3, 5, 7, 10.

SUMMARY

We will learn a very cool analytical technique for obtaining a formula for solutions of linear ODEs.

Consider re-writing the standard linear DE $\frac{d y}{d x}=a(x) y+b(x)$ as

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

EXAMPLE Integrating Factor

It turns out that if one takes the function $\mu(x)=e^{\int P(x) d x}$ and multiplies each term in the modified standard form in (1) by this integrating factor one obtains:

$$
\begin{aligned}
e^{\int P(x) d x} \frac{d y}{d x}+e^{\int P(x) d x} P(x) y & =e^{\int P(x) d x} Q(x) \\
\frac{d}{d x}\left(e^{\int P(x) d x} y\right) & =Q(x) e^{\int P(x) d x} \\
e^{\int P(x) d x} y & =\int Q(x) e^{\int P(x) d x} d x \\
y(x) & =e^{-\int P(x) d x} \int Q(x) e^{\int P(x) d x} d x
\end{aligned}
$$

This is an exact formula for general solutions to the equation in (1).

EXAMPLE

Solve $\frac{d y}{d t}=-2 t y+4 e^{-t^{2}}$

Exercise

Blanchard, page 135, Question 7. Solve $\frac{d y}{d t}=-\frac{y}{1+t}+2 \quad y(0)=3$.

GROUPWORK
Blanchard, page 135, Question 20. For what value(s) of the parameter r is it possible to find explicit formulas (without integrals) for the solution to

$$
\frac{d y}{d t}=t^{r} y+4 ?
$$

