BONUS	QUIZ 2
-------	--------

Differential Equations

Name:	
rame:	

Wednesday September 17
Prof. Ron Buckmire

Topic: Practice With Bifurcations

The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of bifurcations in first-order ordinary differential equations.

Reality	Check:
---------	--------

EXPECTED SCORE :	/5	ACTUAL SCORE :	/5
	-	/	_

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/341/08/
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone. **Do not mention** the existence of this quiz to anyone else in the class.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. **This bonus quiz is due on Friday September 19**, with the rest of your week's homework. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.

Pledge: I,	, pledge my	honor as a	a human	being and	Occidenta	l student
that I have followed all the rules above	to the lette	er and in s	pirit.			

1. Consider the following one-parameter family of nonlinear first-order differential equations where α is a known real parameter value

$$\frac{dy}{dx} = y^2 - \alpha y + 1.$$

(a) 1 point. Show that this DE has no equilibrium points for $|\alpha| < 2$.

(b) 1 point. For what values of α will the DE have exactly one equilibrium point? Classify the equilibrium point in this case and give the constant solution.

(c) 2 points. Show that when $|\alpha| > 2$ the DE has exactly one stable equilibrium point (sink) and one unstable equilibrium point (source). Give all the constant solutions.

(d) 1 point. Use your answers from above to sketch the bifurcation diagram for the given DE. (HINT: think about what happens to equilibrium solutions as $\alpha \to \pm \infty$!)