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REVIEW EXERCISES FOR CHAPTER 2

1. The simplest solution is an equilibrium solution, and the origin is an equilibrium point for this sys-
- tem. Hence, the equilibrium solution @), y@) = (0,0) forall # is a solution.

{2) Note that d y/dt > 0 for all (x, ¥). Hence, there are no equilibrium points for this system.
3. Let v = dy/dt. Then dv/dt = dzy/dtz, and we obtain the system

dy _
dr —
dv

r——— —

dt ~

4. First we solve dv/dt = 1 and getv(t) =r + ¢1, where ¢y is an arbitrary constant. Next we solve

dy/dt =v =t + c1 and obtain y(z) = %tz + c1t + ¢3, where ¢2 18 an arbitrary constant, Therefore,
The general solution of the system is

YO = 32+ c1t + ¢,
v(t) =t +c.

S. The equation for dx/dt gives y = 0, If y =0, then sin(xy) = 0, so dy/dt = 0, Hence, every point
on the x-axis is an equilibrium point.

6. The second-order equation for this harmonic oscillator is

2
ﬁ% + VZ%) +ay =0.
The corresponding system is
dy
=
dv o
— ==y -y

dr B~ B
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7. From the equation for dx /dt, we know that x (t) = k1e?, where kq is an arbitrary constant, and from

the equation for dy/dt, we have y(t) = kpe™3, where k, is another arbitrary constant. The general
solution is (x(2), y(2)) = (k1€%, kpe™).

8. Note that (0, 2) is an equilibrium point for this system. Hence, the solution with this initial condition
is an equilibrium solution.

X,y
) y(2)
1....

x(1)

9. There are many examples. One is

f?: = (> = DE? - HE? - 9)(? - 16)(x? - 25)
dy _
a7

This system has equilibria at (41, 0), (2, 0), (3, 0), (&4, 0), and (&5, 0).
One step of Euler’s method is
2, D+ AtF2,1)=2,1)+0.53,2)
= (3.5, 2).

({ 11)The point (1, 1) is on the line y = x. Along this line, the vector field for the system points toward
the origin. Therefore, the solution curve consists of the half-line y = x in the first quadrant. Note
that the point (0, 0) is not on this curve.

Y
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12. Let F(x, y) = (f(x,y), g(x,y)) be the vector field for the original system. The vector field for the
new system is

G(x,y) = (=f(x, ), —g(x, )
=—=(fx, ), g, y)
= —F(x, y).
In other words, the directions of vectors in the new field are the opposite of the directions in the

original field. Consequently, the phase portrait of new system has the same solution curves as the

original phase portrait except that their directions are reversed. Hence, all solutions tend away from
the origin as ¢ increases. '
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@True. First, we check the equation for dx/dt. We have

Sdx d(e™%) g6
dt dt ’

and |
2x —2y? =2(e7%) —2(2e73)? =276 87 = _Ge~

Since that equation holds, we check the equation for dy/dt. We have

dy _d(2e™)

= —6 -3t
dt dt ¢

and _
—3y = —3Q2e ¥) = —6e7,

Since the equations for both dx/dt and dy/dt hold, the function (x(7), y(r)) = (e=%,2¢~3) is a
solution of this system.

alse. A solution to this system must consist of a pair (x(¢), y(¢)) of functions.

15. False. The components of the vector field are the right-hand sides of the equations of the system.

16. True. For example,

dx and dx
o= E=2y
i)—):x £l’—y-=2x
dt dt

have the same direction field. The vectors in their vector fields differ 6n1y in length.

17. False. Note that (x(0), y(0)) = (x(«), y(7)) = (0, 0). However, (dx/dt,dy/dt) = (1,1) att = 0,
and (dx/dt,dy/dt) = (-1, —1) at t = m. For an autonomous system, the vector in the vector field
at any given point does not vary as ¢ varies. This function cannot be a solution of any autonomous
system. (This function parameterizes a line segment in the xy-plane from (1, 1) to (=1, —1). In fact,
it sweeps out the segment twice for 0 < ¢ < 27.)

18. True. For an autonomous system, the rates of change of solutions depend only on position, not on
. time. Hence, if a function (x1(¢), y1(¢)) satisfies an autonomous system, then the function given by

(2(t), y2(1)) = (1t + T), y1(¢ + 1)),
where T is some constant, satisfies the same system.

alse. The point (0, 0) is an équilibn'um point, so the Uniqueness Theorem guarantees that it is not
on the solution curve corresponding to (1, 0).

alse. From the Uniqueness Theorém, we know that the solution curve with initial condition (1 / 2,0)
is trapped by other solution curves that it cannot cross (or even touch). Hence, x(¢) and y(z) must
remain bounded for all ¢.

21. False. These solutions are different because they have different values at ¢ = 0. However, they do
trace out the same curve in the phase plane.
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(c) If (x(0), y(0)) = (1, 0), then we must solve the simultaneous equations

kgek1 =1

—1 4k =0.
Hence, k1 = 1, and k» = 1/e. The solution to the initial-value problem is
@O, y@) = (7le™ ¢, —14eT) = (71 —1 4 ).

@ .

@f x1 is aroot of f(x) (thatis, f(x1) = 0), then the line x = x; is invariant. In other words, given
an initial condition of the form (x1, y), the corresponding solution curve remains on the line for all z.
Along the line x = x1, y(¢) obeys dy/dt = g(¥), so the line x = x1 looks like the phase line of the
equation dy/dt = g(y).

Similarly, if g(y1) = 0O, then the line y = y; looks like the phase line for dx/dt = f(x) except
that it is horizontal rather than vertical.

Combining these two observations, we see that there will be vertical phase lines in the phase
portrait for each root of f(x) and horizontal phase lines in the phase portrait for each root of g(y).
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