
Math 341 Fall 2008 Differential Equations

Report on Test 2 Prof. Ron Buckmire

Point Distribution (N=13)

Range 100+ 92+ 90+ 85+ 80+ 77+ 73+ 68+ 65+ 60+ 55+ 50+ 50-
Grade A+ A A- B+ B B- C+ C C- D+ D D- F
Frequency 0 2 0 4 1 1 0 2 0 0 1 2 0

Summary The exam was designed to review the most important concepts in Chapters 3 and 5: Linear and
Nonlinear Systems of Ordinary Differential Equations. This exam was more oriented towards calculations-
based learners but there were questions designed for students with more visual and verbal learning styles
as well. Overall, class performance was encouraging, somewhat improved from Test 1. The mean score was
76. The median score was 81. The high score was 98.

#1 Linear Systems of Differential Equations. This problem is about applying the general idea of being able
to solve d~x

dt = A~x. (a) This is a warm-up problem, which basically tests do you understand the notation.
Moving from matrix form to a system produces: ẋ = y + z, ẏ = x + z and ż = x + y. (b). Of course one
can find eigenvalues by finding the roots of the characteristic polynomial p(λ) = det(A − λI). But when A
is a 3 × 3 like in this problem the polynomial will be a cubic, which could be tricky to solve. So, instead
I gave you the eigenvectors and relied on your understanding of the relationship between eigenvalues and

eigenvectors, i.e. A~x = λ~x to fid the corresponding eigenvalues. It turns out that E2 = span
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. Oh no, a repeated eigenvalue! But there’s no reason to panic because

the eigenvalue λ = −1 also happens to have geometric multiplicity equal to its algebraic multiplicity. In

other words, it has two eigenvectors. (c) Thus the general solution is ~x = c1e
2t
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. (d). To check your solution in (c) is correct you need to check that it the LEFT and RIGHT

sides of the equation
d~x

dt
=
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
~x are equal. In other words, differentiation on one hand and matrix

multipication on the other.

#2 Equilibria of Planar Systems, Hamiltonian, Trace-Determinant Bifurcation. This question is all

about
d~x

dt
=

[
α 4
1 1

]
~x. bf (a) “A Hamiltonian function H(x, y) for the given system of ODEs exists only

when α = −1.” TRUE. Recall that a planar system ẋ = f(x, y), ẏ = g(x, y) has Hamiltonian function if
fx = −gy. So considering your given system is ẋ = αx + 4y and ẏ = x + y that would mean that fx = −gy

when α = −1. (b) “The curve in the Trace-Determinant plane corresponding to the matrices for all possible
values of α is a line through the origin.” FALSE. Well, the trace T = α+1 and the determinant D = α−4
so how do they change when α changes? It depends on how they depend on each other! T − 1 = α = D + 4
so that D = T − 5. In other words, as α changes it traces out the curve D = T − 5 in the TD-plane,
which repsents a line, that does NOT go through the origin. (c)“There is no value of α for which the phase

portrait of
d~x

dt
=

[
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]
~x near the origin will look like the given figure.” TRUE. Clearly from (b) the

curve in the Trace-Determinant plane hits the T = 0 (D-axis) at a value less than zero, so it is NOT in the
region where centers occur. One could also check that the eigenvalues of A that depend on α have no value
of α whereby they are complex with zero real part.



#3 Non-linear Systems of ODEs, Linearization. The nonlinear system is ẋ = −α−x+y, ẏ = −4x+y+x2.
a) In his case it turns out it is easie to solve the system to find the equilibria. y = α + x and 0 =
−4x+α+x)+x2 leads to a simple quadratic x2−3x+α = 0 which when solves using the quadratic formula
yields the result. (b) When α = 0 one can plug the value into the formulas give in part (a) to obtai the
two equilibrium points (3, 3) and (0, 0). In order to classify the equilibria one needs to obtain the Jacobian,

which turns out to be J(x, y) =
[

−1 1
2x− 4 1

]
so hat J(0, 0) =
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]
and J(3, 3) =
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]
. The

latter has eigenvalues ±
√

3 while the former has eigenvalue ±
√
−3 which means the first is a saddle near

(3,3) and a center near the origin. (c) Since the equilibria occur at
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it is clear that when

√
9 − 4α = 0 there will only be one equilibrium

point and the solution will bifurcate. Thus αB =
9
4
. (d) When α = 9

4 , x = 3
2 and y = 15

4 . J(3
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4 ) =
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−1 1

]
which has Trace equal to zero and determinant equal to zero! So λ = 0, 0. This is a repeated

zero eigenvalue. It turns out that this would mean that the phase portrait near this equlibrium point should

have linear solutions parallel to the eigenvector for λ = 0 which by inspection one can see is
[

1
1

]
but that

this behavior will probably only be valid very close to the equilibrium point.
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