FINAL EXAM: Differential Equations

Math 341
Assigned: April 29, 2005, noon.
Name: \qquad

Directions: There are six (6) problems on this exam. One problem corresponding to each of the Chapters we discussed in the class (Chapter 1, 2 4,6, 7 and 8) of Zill. This is a take-home final exam.

No.	Score	Maximum
1		30
2		30
3		40
4		30
5		40
6		30
Total		$\mathbf{2 0 0}$

1. [30 points total.] Chapter 1.
(a) [10 points]. Verify that $y=\tan (x+c)$ is a one-parameter family of solutions of the differential equation $y^{\prime}=1+y^{2}$.
(b) [10 points]. Explain why the solution to the initial value problem $y^{\prime}=1+y^{2}, y(0)=0$ is not defined for every x on the interval $-2<x<2$. Why does this not violate the Existence and Uniqueness Theorem?
(c) [10 points]. Find the largest interval on which the solution to the IVP $y^{\prime}=1+y^{2}, y(0)=0$ is defined.
2. [30 points total.] Chapter 2.
(a) $\left[15\right.$ points]. Solve the initial value problem $t \frac{d Q}{d t}+Q=t^{4} \ln t, \quad y(1)=1 / 5$.
(a) [15 points]. Consider the autonomous differential equation $\frac{d y}{d t}=k y^{n}$ where n is a positive integer and $k \neq 0$. Classify the stationary point at $y=0$ of the DE for all possible values of k and n.
3. [40 points total.] Chapter 4.

Our goal is to obtain the equation of a curve $y(x)$ which solves $x y^{\prime \prime}+y^{\prime}+\sqrt{x}=0$ but is exactly tangential to the x-axis at $x=1$.
(a) [10 points]. Use an ansatz of $y=x^{m}$ to obtain the homogeneous solution $y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.
(b) [10 points]. Use variation of parameters show that the particular solution $y_{p}(x)=-\frac{2}{3} x^{3 / 2}$.
(c) [10 points]. Use the initial conditions given to obtain the equation of the specific curve which satisfies $x y^{\prime \prime}+y^{\prime}+\sqrt{x}=0$ but is tangential to the x-axis at $x=1$.
(d) [10 points]. Sketch a graph of the curve in the space below (or attach a plot obtained from some software program).
4. [30 pts. total] Chapter 6.

When λ is a known parameter, we have the Laguerre Equation

$$
x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0
$$

(a) 5 points. Show that $x=0$ is a regular singular point of the Laguerre Equation.
(b) 5 points. Find and solve the indicial equation of the Laguerre Equation.
(c) 10 points. Show that the recurrence relation for one of the solutions of this differential equation is $a_{n}=\frac{(n-1-\lambda)}{n^{2}} a_{n-1}$ for $n \geq 1$.
(d) 10 points. Show that if $\lambda=n$ is a positive integer (say $n=3$, for example) then all terms past x^{n} in the power series expansion of the solution $y(x)$ are zero, and thus the Laguerre differential equation has as its solution an $n^{t h}$ degree polynomial, known as a Laguerre Polynomial $y(x)=a_{0} L_{n}(x)$. Write down $L_{0}(x), L_{1}(x), L_{2}(x)$ and $L_{3}(x)$.
5. [40 points total.] Chapter 7.

Our goal in this problem is to obtain the Laplace Transform of a Bessel Function. Consider the initial value problem in Question 60, Page 314,

$$
t y^{\prime \prime}+y^{\prime}+t y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(a) [10 points]. Confirm that the exact solution of this initial value problem is Bessel's function of order zero of the first kind $y(t)=J_{0}(t)$.
(b) [10 points]. Given that $\mathcal{L}\left[t y^{\prime}\right]=-\frac{d}{d s}\left\{\mathcal{L}\left[y^{\prime}\right]\right\}=-\frac{d}{d s}\{s Y(s)-y(0)\}=-s \frac{d Y}{d s}-Y$, show that applying the Laplace Transform to the given initial value problem produces the equation $\mathcal{L}\left[t y^{\prime \prime}+y^{\prime}+t y\right]=-\left(s^{2}+1\right) \frac{d Y}{d s}-s Y(s)=0$.
(c) [10 points]. Solve the differential equation in (b) for $Y(s)$. You should have an unknown constant $A=Y(0)$ in your answer.
(d) [10 points]. Since $y(t)=J_{0}(t)$ is a continuous function of exponential order, it is true that $\lim _{s \rightarrow \infty} s Y(s)=y(0)$. Use this information to obtain the value of A and show that $\mathcal{L}\left[J_{0}(t)\right]=Y(s)=\frac{1}{\sqrt{s^{2}+1}}$.
6. [30 points total.] Chapter 8

Consider the homogeneous system, $\frac{d \vec{x}}{d t}=A \vec{x}$, where $A=\left[\begin{array}{cc}12 & -9 \\ 4 & 0\end{array}\right]$.
(a) [10 points]. Find the eigenvalues of A and their associated eigenvectors.
(b) [10 points]. Write down the general form of the solution $\vec{x}(t)$.
(c) [10 points]. Find the solution when $\vec{x}(0)=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.

