Differential Equations

Math 341 Spring 2005 ©2005 Ron Buckmire

MWF 8:30 - 9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Report on Exam 2

Point Distribution (N=23)

Range	100 +	90 +	85 +	80+	75 +	70 +	65 +	60 +	55 +	50 +	45 +	40+	40-
Grade	A+	А	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
Frequency	2	3	0	2	2	2	0	1	3	0	4	0	4

Comments

- **Summary** Overall class performance was mixed. Almost half the class (11 of 23) earned a 90 or above. The average score on the exam was a 65 with a standard deviation of 22. The highest score was a 105 and the low score was a 30.
- #1 This problem is about what to do when you have repeated eigenvalues and thus you don't have enough eigenvectors. The answer is, you use Generalized Eigenvectors. (a) The eigenvalues of $A = \begin{bmatrix} 12 & -9 \\ 4 & 0 \end{bmatrix}$ are 6 and 6 with one corresponding eigenvector $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. The generalized eigenvector \vec{y} which solves the equations $(A 6I)\vec{y} = \vec{x}$. This means that $2y_1 3y_2 = 1$ where $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. You can pick any values y_1 and y_2 which satisfy this equation. (b) The general solution is $\vec{f}(t) = c_1\vec{x}e^{6t} + c_2e^{6t}(\vec{x}t + \vec{y})$. (c) One can solve for c_1 and c_2 when t = 0 and $\vec{f}(0) = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$.
- #2 (a) ty'' + y' + ty = 0 is really just a form of Bessel's Equation of order 0, i.e. $t^2y'' + ty' + (t^2 0^2)y = 0$ so $y(t) = c_0J_0(t) + c_1Y_0(t)$. Using the initial conditions one can see that $c_1 = 0$ and $c_0 = 1$. (b) This is a very cool result which allows one to apply Laplace Transforms to solve a broader class of linear ODEs. (c) By using separation of variables and assuming Y(0) = A produces the result that $Y(S) = A(s^2 + 1)^{-1/2}$ (d) Since $\lim_{s \to \infty} sY(s) = y(0)$ one needs to show that $\lim_{s \to \infty} As(s^2 + 1)^{-1/2} = A = y(0) = 1$ so this shows that $Y(s) = \frac{1}{\sqrt{s^2 + 1}} = \mathcal{L}[J_0(t)].$

#3 (a). You can show that the x = 0 is a regular singular point by computing $\lim_{x\to 0} xP(x) = p_0$ and $\lim_{x\to 0} x^2Q(x) = q_0$ where the DE is y'' + P(x)y' + Q(x)y = 0. Since $p_0 = 1$ and $q_0 = 0$ the indicial equation is simply $r^2 = 0$. (c) You can use Frobenius Theorem to obtain a series solution of the form $y = \sum_{n=0}^{\infty} a_n x^n$ of the Laguerre's equation $xy'' + (1-x)y' + \lambda y = 0$ and obtain the given recurrence relation that $a_n = \frac{n-1-\lambda}{n^2}a_{n-1}$ (d) Using the result from (c) $y(x) = a_0 + a_0\frac{(-\lambda)}{1^2}x + \frac{(-\lambda)(1-\lambda)}{1^2 \cdot 2^2}x^2 + a_0\frac{(-\lambda)(1-\lambda)(2-\lambda)}{1^2 \cdot 2^2 \cdot 3^2}x^3 + a_0\frac{(-\lambda)(1-\lambda)(2-\lambda)(3-\lambda)}{(4!)^2}x^4 + \ldots + a_0\frac{(-\lambda)(1-\lambda)(2-\lambda)\dots(n-\lambda)}{(n!)^2}x^{n+1}$ when $\lambda = n$ one obtains a different n^{th} degree polynomial known as a Laguerre Polynomial for every

one obtains a different n^{th} degree polynomial known as a Laguerre Polynomial for every positive integer value of λ .