Differential Equations

Math 341 Spring 2005
(C) 2005 Ron Buckmire

MWF 8:30-9:25am Fowler North 2 http://faculty.oxy.edu/ron/math/341

Report on Exam 2

Point Distribution ($\mathrm{N}=23$)

Range	$100+$	$90+$	$85+$	$80+$	$75+$	$70+$	$65+$	$60+$	$55+$	$50+$	$45+$	$40+$	$40-$
Grade	$\mathrm{A}+$	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	$\mathrm{D}+$	D	$\mathrm{D}-$	F
Frequency	2	3	0	2	2	2	0	1	3	0	4	0	4

Comments

Summary Overall class performance was mixed. Almost half the class (11 of 23) earned a 90 or above. The average score on the exam was a 65 with a standard deviation of 22 . The highest score was a 105 and the low score was a 30.
\#1 This problem is about what to do when you have repeated eigenvalues and thus you don't have enough eigenvectors. The answer is, you use Generalized Eigenvectors. (a) The eigenvalues of $A=\left[\begin{array}{cc}12 & -9 \\ 4 & 0\end{array}\right]$ are 6 and 6 with one corresponding eigenvector $\vec{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$. The generalized eigenvector \vec{y} which solves the equations $(A-6 I) \vec{y}=\vec{x}$. This means that $2 y_{1}-3 y_{2}=1$ where $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$. You can pick any values y_{1} and y_{2} which satisfy this equation. (b) The general solution is $\vec{f}(t)=c_{1} \vec{x} e^{6 t}+c_{2} e^{6 t}(\vec{x} t+\vec{y})$. (c) One can solve for c_{1} and c_{2} when $t=0$ and $\vec{f}(0)=\left[\begin{array}{l}4 \\ 4\end{array}\right]$.
\#2 (a) $t y^{\prime \prime}+y^{\prime}+t y=0$ is really just a form of Bessel's Equation of order 0, i.e. $t^{2} y^{\prime \prime}+$ $t y^{\prime}+\left(t^{2}-0^{2}\right) y=0$ so $y(t)=c_{0} J_{0}(t)+c_{1} Y_{0}(t)$. Using the initial conditions one can see that $c_{1}=0$ and $c_{0}=1$. (b) This is a very cool result which allows one to apply Laplace Transforms to solve a broader class of linear ODEs. (c) By using separation of variables and assuming $Y(0)=A$ produces the result that $Y(S)=A\left(s^{2}+1\right)^{-1 / 2}$ (d) Since $\lim _{s \rightarrow \infty} s Y(s)=y(0)$ one needs to show that $\lim _{s \rightarrow \infty} A s\left(s^{2}+1\right)^{-1 / 2}=A=y(0)=1$ so this shows that $Y(s)=\frac{1}{\sqrt{s^{2}+1}}=\mathcal{L}\left[J_{0}(t)\right]$.
\#3 (a). You can show that the $x=0$ is a regular singular point by computing $\lim _{x \rightarrow 0} x P(x)=p_{0}$ and $\lim _{x \rightarrow 0} x^{2} Q(x)=q_{0}$ where the DE is $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. Since $p_{0}=1$ and $q_{0}=0$ the indicial equation is simply $r^{2}=0$. (c) You can use Frobenius Theorem to obtain a series solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ of the Laguerre's equation $x y^{\prime \prime}+(1-x) y^{\prime}+$ $\lambda y=0$ and obtain the given recurrence relation that $a_{n}=\frac{n-1-\lambda}{n^{2}} a_{n-1}$ (d) Using the result from (c) $y(x)=a_{0}+a_{0} \frac{(-\lambda)}{1^{2}} x+\frac{(-\lambda)(1-\lambda)}{1^{2} \cdot 2^{2}} x^{2}+a_{0} \frac{(-\lambda)(1-\lambda)(2-\lambda)}{1^{2} \cdot 2^{2} \cdot 3^{2}} x^{3}+$ $a_{0} \frac{(-\lambda)(1-\lambda)(2-\lambda)(3-\lambda)}{(4!)^{2}} x^{4}+\ldots+a_{0} \frac{(-\lambda)(1-\lambda)(2-\lambda) \ldots(n-\lambda)}{(n!)^{2}} x^{n+1}$ when $\lambda=n$ one obtains a different $n^{\text {th }}$ degree polynomial known as a Laguerre Polynomial for every positive integer value of λ.

