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Worksheet 22
TITLE Linearization: Analyzing Quasi-Linear Systems of ODEs

CURRENT READING Blanchard, 5.1

Homework Assignments due Monday November 2
(* indicates EXTRA CREDIT)
Section 5.1: 3, 4, 5, 8, 18, 20*.
Section 5.3: 2, 9, 12, 13, 14, 18*.
Chapter 5 Review: 1, 2, 6, 7, 8, 9, 11, 12, 26, 27*.

SUMMARY
We shall begin our analysis of non-linear systems using a technique called linearization which
transforms the behavior of nonlinear systems of ODEs back into our now familiar analysis
of linear systems of ODEs. Remember your Taylor Approximations!

1. The Van der Pol Equation
An important nonlinear system of ODEs which occurs in Physics is the Van der Pol Equation
for x(t) x′′ + x− (1− x2)x′ = 0 which can be written as a non-linear system as

dx

dt
= y

dy

dt
= −x + (1− x2)y

Below is the direction field and phase portrait for the Van der Pol system. What do you
notice? (HINT: Locate the stationary point(s)!)

Q: What happens to solutions that start near the origin at (0,0)? What about solutions
that start (relatively) far away at (3,3)?
A:
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Here is a close up of the phase portrait near the point (0, 0)

Q: What can we say about the stationary point at (0,0) of the Van der Pol system?
A:

EXAMPLE
Let’s use the technique of linearization to explain the behavior near the origin of the Van
der Pol system. Suppose x and y are close to 0.1 in size, then the nonlinear term x2y will
be close to (0.13) in magnitude, much then either x or y.

We can therefor write a linearized version of the Van der Pol system which looks like
dx

dt
= y

dy

dt
= −x + y

which when written as a matrix looks like
d~x

dt
=

[
0 1
−1 1

]
~x where ~x =

[
x(t)
y(t)

]
Exercise

Find the eigenvalues of the linearized Van der Pol system and use this information to classify
the stationary point at (0,0).
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2. The Linearization Process
RECALL
Definition: Jacobian matrix

The derivative matrix (usually called the Jacobian) of a vector function ~f : Rn → Rm

is the matrix consisting of the n partial derivatives of each of the m co-ordinate functions
arranged so that the rows of the matrix are exactly gradient vectors of each coordinate

function. The Jacobian has mn entries where Ji,j =
∂fi
∂xj

. In other words,

J(~x) =



∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


Consider the general form of a 2-dimensional nonlinear system of 1st order ODEs

dx

dt
= f(x, y)

dy

dt
= g(x, y)

This can also be thought of as
d~x

dt
= ~f(~x). Clearly in this case f : R2 → R2 so the Jacobian

matrix J for ~f(~x) would be a .

We can always use Taylor’s Theorem for Vector-Valued Functions to approximate the func-
tion ~f(~x) near a point ~x0 by saying

~f(~x) ≈ ~f(~x0) + J(~x0)(~x− ~x0) + . . .

This will be extrememly useful if the nonlinear system has a fixed point at the point (x0, y0)
(also known as ~x0) because then we will be able to analyze a linear system of the form

d~x

dt
= J(~x0)(~x− ~x0)

instead of the original nonlinear system

In fact, usually the change of variables ~u = ~x − ~x0 will be made and we will be analyzing
the system

d~u

dt
= J(x0, y0)~u, where ~u =

[
u
v

]
=

[
x− x0

y − y0

]
where the fixed point will now be at the origin of the (u, v)-system instead of at (x0, y0) in
the xy-plane.
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GroupWork
Consider

dx

dt
= −x + x3

dy

dt
= −2y

Identify and then classify all the equilibria of the non-linear system of ODEs, using the
Linearization Process. (HINT: calculate the Jacobian, evaluate at each equilibria, compute
the eigenvalues and classify the equilibria)
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