Differential Equations

Math 340 §2 Fall 2015
MWF 3:00-3:55pm Fowler 307
(8.) 2015 Ron Buckmire

Worksheet 22

TITLE Linearization: Analyzing Quasi-Linear Systems of ODEs
CURRENT READING Blanchard, 5.1

Homework Assignments due Monday November 2

(* indicates EXTRA CREDIT)
Section 5.1: 3, 4, 5, 8, 18, 20*.
Section 5.3: 2, 9, 12, 13, 14, 18*.
Chapter 5 Review: 1, 2, 6, 7, 8, 9, 11, 12, 26, 27^{*}.

SUMMARY

We shall begin our analysis of non-linear systems using a technique called linearization which transforms the behavior of nonlinear systems of ODEs back into our now familiar analysis of linear systems of ODEs. Remember your Taylor Approximations!

1. The Van der Pol Equation

An important nonlinear system of ODEs which occurs in Physics is the Van der Pol Equation for $x(t) x^{\prime \prime}+x-\left(1-x^{2}\right) x^{\prime}=0$ which can be written as a non-linear system as

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-x+\left(1-x^{2}\right) y
\end{aligned}
$$

Below is the direction field and phase portrait for the Van der Pol system. What do you notice? (HINT: Locate the stationary point(s)!)

Q: What happens to solutions that start near the origin at $(0,0)$? What about solutions that start (relatively) far away at $(3,3)$?
A:

Here is a close up of the phase portrait near the point $(0,0)$

Q: What can we say about the stationary point at $(0,0)$ of the Van der Pol system? A:

EXAMPLE

Let's use the technique of linearization to explain the behavior near the origin of the Van der Pol system. Suppose x and y are close to 0.1 in size, then the nonlinear term $x^{2} y$ will be close to $\left(0.1^{3}\right)$ in magnitude, much \qquad then either x or y.

We can therefor write a linearized version of the Van der Pol system which looks like

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-x+y
\end{aligned}
$$

which when written as a matrix looks like $\frac{d \vec{x}}{d t}=\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right] \vec{x}$ where $\vec{x}=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$

Exercise

Find the eigenvalues of the linearized Van der Pol system and use this information to classify the stationary point at $(0,0)$.

2. The Linearization Process

RECALL

Definition: Jacobian matrix

The derivative matrix (usually called the Jacobian) of a vector function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the matrix consisting of the n partial derivatives of each of the m co-ordinate functions arranged so that the rows of the matrix are exactly gradient vectors of each coordinate function. The Jacobian has $m n$ entries where $J_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}$. In other words,

$$
J(\vec{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Consider the general form of a 2-dimensional nonlinear system of 1st order ODEs

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, y) \\
& \frac{d y}{d t}=g(x, y)
\end{aligned}
$$

This can also be thought of as $\frac{d \vec{x}}{d t}=\vec{f}(\vec{x})$. Clearly in this case $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ so the Jacobian matrix J for $\vec{f}(\vec{x})$ would be a \qquad .

We can always use Taylor's Theorem for Vector-Valued Functions to approximate the function $\vec{f}(\vec{x})$ near a point \vec{x}_{0} by saying

$$
\vec{f}(\vec{x}) \approx \vec{f}\left(\vec{x}_{0}\right)+J\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)+\ldots
$$

This will be extrememly useful if the nonlinear system has a fixed point at the point (x_{0}, y_{0}) (also known as \vec{x}_{0}) because then we will be able to analyze a linear system of the form

$$
\frac{d \vec{x}}{d t}=J\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)
$$

instead of the original nonlinear system
In fact, usually the change of variables $\vec{u}=\vec{x}-\vec{x}_{0}$ will be made and we will be analyzing the system

$$
\frac{d \vec{u}}{d t}=J\left(x_{0}, y_{0}\right) \vec{u}, \quad \text { where } \vec{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]
$$

where the fixed point will now be at the origin of the (u, v)-system instead of at $\left(x_{0}, y_{0}\right)$ in the $x y$-plane.

GroupWork

Consider

$$
\begin{aligned}
& \frac{d x}{d t}=-x+x^{3} \\
& \frac{d y}{d t}=-2 y
\end{aligned}
$$

Identify and then classify all the equilibria of the non-linear system of ODEs, using the Linearization Process. (HINT: calculate the Jacobian, evaluate at each equilibria, compute the eigenvalues and classify the equilibria)

