Differential Equations

Worksheet 4
TITLE Euler's Method
CURRENT READING Blanchard, 1.4
Homework Set \#3 due Friday September 11
Section 1.4: 2, 6, 11, 15. Section 1.5: 2, 3, 12, 14, 15.
Section 1.6: 2, 7, 8, 19, 20, 30, 31, 41.

SUMMARY

We will learn about a simple (and possibly familiar) numerical technique called Euler's Method which approximates solutions to ODEs quantitatively.

Euler's Method

Given an expression for how the derivative of an unknown function $y(x)$ changes, i.e. $y^{\prime}=$ $f(x, y)$, and an initial value $y\left(x_{0}\right)=y_{0}$ one can use Euler's Method to estimate $y(x)$ at a point close by with bounded error.

$$
y\left(x_{\text {new }}\right)=y\left(x_{\text {old }}\right)+\Delta y \text { where } \Delta y \approx y^{\prime}\left(x_{\text {old }}\right) \Delta x
$$

In other words
$y_{\text {new }} \approx y_{\text {old }}+y_{\text {old }}^{\prime} \Delta x$ and $x_{\text {new }}=x_{\text {old }}+\Delta x$ or $y_{k+1} \approx y_{k}+f\left(x_{k}, y_{k}\right) \Delta x$ and $x_{k+1}=x_{k}+\Delta x$.

Exercise

Draw a picture of the Euler approximation $y_{\text {new }}$ starting at a point $\left(x_{\text {old }}, y_{\text {old }}\right)$. Is the slope field involved?

EXAMPLE

Using Euler's Method To Approximate Solutions To Differential Equations

1. Suppose y changes with time t according to the equation $y^{\prime}=1+2 y$.
(a) What is the rate of change of y when $y=3$?
(b) Suppose when $t=0, y=3$. Use Euler's Method with $\Delta t=.5$ to estimate $y(1)$.
(c) Is your estimate of $y(1)$ an over-estimate or under-estimate?

To use Euler's Method generally the following table can be helpful

x	y	y^{\prime}	Δy

Slope Fields and Euler's Method

Exercise

Consider the differential equation $y^{\prime}=-x / y$ with initial condition $y(0)=1$. Given that the exact solution is $y(x)=\sqrt{1-x^{2}}$,
(a) use the slope field to estimate $y(1 / 2)$ for the solution that satisfies the given initial condition.
(b) Compare your estimate with the exact value of $y(1 / 2)$
(c) Use Euler's Method with $\Delta x=.25$ to estimate $y(1 / 2)$.
(d) Is your Euler's Method estimate and over-estimate or under-estimate? Explain why.

To use Euler's Method generally the following table can be helpful

x	y	y^{\prime}	Δy

Numerical Error in Using Euler's Method

GroupWork

Complete the following sentences:
As the time step Δt \qquad in magnitude, the numerical error in computing $y\left(x_{1}\right)$ using Euler's Method decreases in magnitude.
As the time step Δt \qquad in magnitude, the numerical error in computing $y\left(x_{1}\right)$ using Euler's Method increases in magnitude.
When $y^{\prime \prime}$ is \qquad on $x_{0}<x<x_{1}$ the function $y(x)$ is concave up and estimates of $y\left(x_{1}\right)$ using Euler's Method will be \qquad . When $y^{\prime \prime}$ is \qquad on $x_{0}<x<x_{1}$ the function $y(x)$ is concave down and estimates of $y\left(x_{1}\right)$ using Euler's Method will be \qquad .

