Differential Equations

Math 340 §2 Fall 2015
MWF 3:00-3:55pm Fowler 307
(B6) 2015 Ron Buckmire
http://sites.oxy.edu/ron/math/340/15/

Class 2: Friday August 28

TITLE Separation of Variables
CURRENT READING Blanchard, $\S 1.2$ and $\S 1.3$
HOMEWORK (Due Friday September 4)
Section 1.1: 2, 3, 13,14. Section 1.2: 1, 2, 3, 6, 21, 27, 32. Section 1.3: 7, 8, 12, 13,14,16.

SUMMARY

In today's class we shall review an analytical technique for solving a particular class of first-order (separable) ODEs known as Separation of Variables.

1. Solving Separable Differential Equations

DEFINITION: separable DE

A separable first-order differential equation is one which has the form $\frac{d y}{d x}=g(x) h(y)$ The technique for solution is to separate the variables in the equation by placing everything with an independent variable on one side, and everything with a dependent variable on the other. This produces:

$$
\frac{d y}{h(y)}=g(x) d x
$$

One can then treat each side of the equation as an indefinite integral,

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

which, if each function $1 / h(y)$ and $g(x)$ have anti-derivatives $H(y)$ and $G(x)$, respectively produces

$$
H(y)=G(x)+C
$$

The above equation thus defines (implicitly) a 1-parameter family of solutions to the given firstorder DE. When an initial condition $y(a)=b$ is also given, then a particular solution can be obtained.

EXAMPLE

Let's consider the Malthusian Model of population $P^{\prime}=k P, P(0)=P_{0}$ and obtain the solution to this initial value problem by separation of variables.

NOTE: k is a parameter in the Malthusian population model, which has P as a dependent variable and t as an independent variable.

Exercise

Let's consider the Verhulst or Logistic Model of Population $P^{\prime}=k P(1-P / N), P(0)=P_{0}$. What are the interpretation of the parameters k and N in the Verhulst model?

GROUPWORK

Show that if you make the change of variables $Q(t)=P(t) / N$ the Logistic Model can be written as $Q^{\prime}=k Q(1-Q)$ which has a solution of the form $Q(t)=\frac{1}{1+C e^{-k t}}$ where C is any real number.

The particular solution to the given IVP for the Verhulst model is $P(t)=\frac{P_{0} N}{P_{0}+\left(N-P_{0}\right) e^{-k t}}$

