Quiz 11	Ordinary Differential Equations
Name:	_ Prof. Ron Buckmire
	ASSIGNED: Friday November 20
Time Begun: Time Ended:	DUE: Monday November 23
Topic: Advanced Laplace Transforms	
The idea behind this quiz is to provide you with an opportunity and a complicated function.	ortunity to demonstrate your ability with inverting
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to h	ttp://sites.oxy.edu/ron/math/340/15/
1. Once you open the quiz, you have 30 minute and end time at the top of this sheet.	es to complete it, please record your start time
2. You may use the book or any of your class not	tes. You must work alone.
3. If you use your own paper, please staple it to the a stapler, buy one. QUIZZES WITH UNSTAR	ı
4. After completing the quiz, sign the pledge below to these rules.	ow stating on your honor that you have adhered
5. Your solutions must have enough details such the determine HOW you came up with your solutions.	nat an impartial observer can read your work and ion. Use complete sentences wherever possible.
6. Relax and enjoy	
7. This quiz is due at the beginning of cla LATE OR UNSTAPLED QUIZZES WILL BE	· · · · · · · · · · · · · · · · · · ·

Pledge: I, _______, pledge my honor as a human being and Occidental student,

that I have followed all the rules above to the letter and in spirit.

1. The goal of this problem is to find the function f(t) whose Laplace Transform is

$$F(s) = A(s) - B(s) = \frac{1}{s^2} - \frac{e^{-s}}{s(1 - e^{-s})}, \quad s > 0$$

(a) 2 points. Compute $\mathcal{L}^{-1}\left[\frac{1}{s^2}\right] = a(t)$.

(b) 2 points. If one considers $\frac{1}{1-e^{-s}}$ as the sum of a geometric series $\sum_{k=0}^{\infty} ar^k$ with first term a=1 and ratio $r=e^{-s}$ then show that $\frac{e^{-s}}{s(1-e^{-s})}$ can be written as $\sum_{k=1}^{\infty} \frac{e^{-ks}}{s} = \frac{e^{-s}}{s} + \frac{e^{-2s}}{s} + \frac{e^{-3s}}{s} + \dots$

(c) 3 points. Recall that $\mathcal{L}^{-1}\left[e^{-as}F(s)\right] = f(t-a)\mathcal{H}(t-a)$. Using the result given in (b), compute $\mathcal{L}^{-1}\left[\frac{e^{-s}}{s(1-e^{-s})}\right] = b(t)$.

(d) 3 points. Give a sketch of a(t), b(t) and f(t) = a(t) - b(t) below for t > 0 (Use different pairs of axes for each graph.)