Quiz 8	Ordinary Differential Equations
Name:	Prof. Ron Buckmire
	ASSIGNED: Friday October 23
Time Begun: Time Ended:	DUE: Monday October 26
Topic: Bifurcations in Systems of Differen	itial Equations
The learning goal of this quiz is to provide you w bifurcations with your understanding of linear syst	with an opportunity to combine your understanding of tems of DEs.
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted	to http://sites.oxy.edu/ron/math/340/15/
1. Once you open the quiz, you have 30 mi and end time at the top of this sheet.	nutes to complete it, please record your start time
2. You may use the book or any of your class	ss notes. You must work alone.
3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH UNSTAPLED SHEETS WILL NOT BE GRADED.	
4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.	
~	such that an impartial observer can read your work your solution. Use complete sentences wherever
6. Relax and enjoy	
7. This quiz is due at the beginning of LATE OR UNSTAPLED QUIZZES WIL	of class on Monday October 26, in class. NO L BE ACCEPTED.
Pledge: I,, pledge that I have followed all the rules above to the l	my honor as a human being and Occidental student, etter and in spirit.

1. Consider the linear system of ordinary differential equations with a real-valued parameter a

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & a \\ 2 & 0 \end{bmatrix} \vec{x} \text{ where } \vec{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Let's describe how the phase portrait changes as a varies from $-\infty$ to $+\infty$.

(a) 3 points. Compute all the eigenvalues and eigenvectors in order to sketch the phase portrait when a = -1. Classify the stationary point at the origin (i.e. as unstable source, stable sink, or saddle point, etc) for this value of the parameter.

(b) 3 points. Compute all the eigenvalues and eigenvectors in order to sketch the phase portrait when a = 4. Classify the stationary point at the origin for this value of the parameter.

(c) 4 points. For what value of a does the system change its nature (i.e. bifurcate)? Call this value a_B and compute the eigenvalues and eigenvectors in order to sketch the phase portrait for $a = a_B$. Classify the stationary point at the origin for this value of the parameter.