Quiz 4	Ordinary Differential Equations
Name:	Prof. Ron Buckmire
	ASSIGNED: Friday September 18
Time Begun: Time Ended:	DUE: Monday September 21
Topic: Practice With Bifurcations	
The learning goal of this quiz is to provide you bifurcations in first-order ordinary differential ed	with an opportunity to illustrate your understanding of quations.
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz post	ed to http://sites.oxy.edu/ron/math/340/15/
1. Once you open the quiz, you have 30 and end time at the top of this sheet.	minutes to complete it, please record your start time
2. You may use the book or any of your c	lass notes. You must work alone.
0 0 1 1 7 1	it to the quiz before coming to class. If you don't have NSTAPLED SHEETS WILL NOT BE GRADED.
4. After completing the quiz, sign the pled to these rules.	ge below stating on your honor that you have adhered
e e e e e e e e e e e e e e e e e e e	ls such that an impartial observer can read your work ith your solution. Use complete sentences wherever
6. Relax and enjoy	
7. This quiz is due at the beginning LATE OR UNSTAPLED QUIZZES W	of class on Monday September 21, in class. NO ILL BE ACCEPTED.
Pledge: I,, pled that I have followed all the rules above to th	ge my honor as a human being and Occidental student, e letter and in spirit.

1. Consider the following one-parameter family of nonlinear, first-order, autonomous differential equations where α is a known real parameter value

$$\frac{dy}{dx} = y^2 - \alpha y + 1.$$

(a) 2 points. Show that this DE has no equilibrium values when $|\alpha| < 2$.

(b) 2 points. For what values of α will the DE have exactly one equilibrium value? Classify the equilibrium point (as node, source or sink) in this case and write down the constant solution.

(c) 4 points. Show that when $|\alpha| > 2$ the DE has exactly one stable equilibrium value (sink) and one unstable equilibrium value (source). Show work that supports your classification of the equilibria, and sketch a phase line for a representative value of α .

(d) 2 points. Use your answers from above to sketch the bifurcation diagram for the given DE. Clearly indicate on your sketch where sources, sinks and nodes occur. (HINT: think about what happens to the equilibrium values as $\alpha \to \pm \infty$!)