BONUS QUIZ 2

Ordinary Differential Equations

Name:	Prof. Ron Buckmire
Time Degun	Assigned: Friday October 23
Time Begun: Time Ended:	DUE: Monday October 26

Topic : Visualizing Solutions of Linear Systems of ODEs

The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of solution techniques for systems of n linear ordinary differential equations.

Reality Check:

Instructions:

- 0. BEFORE you open the quiz, look for a hint at sites.oxy.edu/ron/math/340/15
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. NO LATE OR UNSTAPLED QUIZZES WILL BE ACCEPTED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This bonus quiz is due on Monday October 26, at the beginning of class.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

SHOW ALL YOUR WORK

1. Consider the system of ordinary differential equations

$$\frac{d\vec{x}}{dt} = A\vec{x} = \begin{bmatrix} 0 & 2\\ 0 & -1 \end{bmatrix} \vec{x} \text{ where } \vec{x}(t) = \begin{bmatrix} x(t)\\ y(t) \end{bmatrix}$$

(a) 1 point. Show that the matrix A has eigenvalues 0 and -1 and eigenvectors which are multiples of $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} -2\\1 \end{bmatrix}$. Write down the 2-parameter general solution of the system $\frac{d\vec{x}}{dt} = A\vec{x}$.

(b) 2 points. Find the exact solution $\vec{x}(t)$ for each of the trajectories which go through the points A(1,1), B(0,-2) and C(4,0) at t = 0.

(c) 2 points. On the figure below clearly indicate the trajectories for each of the solutions which start at $\mathbf{A}(1,1)$, $\mathbf{B}(0,-2)$ and $\mathbf{C}(4,0)$ ends up as $t \to \infty$. Label these endpoints \mathbf{A}' , \mathbf{B}' and \mathbf{C}' respectively.

