09.29.2014, Question 1: We are testing the function $f(x)=C_0e^{2x}$ + C_1e^{-2x} as a possible solution to a DE. After we substitute the function and its derivative into the DE we get $2C_0e^{2x}-2C_1e^{-2x} = -2(C_0e^{2x}+C_1e^{-2x})$ + $3e^{2x}$. What value of C_0 will allow this function to work as a solution? (a) $C_0 = \frac{3}{4}$ (c) $C_0 = 3$ (e) Any value of C_0 will work. (b) $C_0 = \frac{3}{2}$ (d) $C_0 = 2$ (f) No value of C_0 will work.

Look at the coefficients of the exp(2x): $2 C_0 = -2C_0 + 3 --> 4C_0 = 3 --> C_0 = 3/4.$

Just for fun, look at coefficients of exp(-2x): $-2C_1 = 2C_1 -> 4C_1 = 0 --> C_1 = 0.$

This is called the method of undetermined coefficients and is a very powerful solution technique

09.29.2014, Question 2: When we have y'=7y+2x we should conjecture $y=C_0e^{7x}+C_1x+C_2$. Why include the C_2 ?

- (a) Because the 7y becomes a constant 7 when we take the derivative and we need a term to cancel this out.
- b) Because when we take the derivative of $C_1 x$ we get a constant C_1 and we need a term to cancel this out.
- (c) Because this will allow us to match different initial conditions.
- (d) This does not affect the equation because it goes away when we take the derivative.

y'=7y is the homogeneous DE which has exp(7x) as it's solution. The non-homogeneous function is 2x so our guess is C_1x+C_2 . Plug this in to y'=7y+2x:

 $(C_1x+C_2)'=7(C_1x+C_2)+2x$

C_1=7C_2 & *0=7C_1x+2x* -> C_1=-2/7, C_2=-2/49 As you can see the C_1x gets balanced by C-_2.

- **09.29.2014, Question 3**: We have the equation y'=2y+sin(3t). What should our conjecture for y(t)be? (a) $y = C_0e^{2t} + \sin 3t$ (d) $y = C_0e^{2t} + C_1\sin 3t + C_2\cos 3t$
- (b) $y = C_0 e^{2t} + \sin 3t + \cos 3t$

(c) $y = C_0 e^{2t} + C_1 \sin 3t$

- (d) $y = C_0 e^{2t} + C_1 \sin 3t + C_2 \cos 3t$ (e) $y = C_0 e^{2t} + C_1 e^{-2t} + C_2 \sin 3t + C_3 \cos 3t$
- (f) None of the above
- Since the non-homogeneous term is sin(3t)the conjecture for y_p should look like (1 cos(3t)+C 2 sin(3t) while y_p is (2 cos(2t))
- $C_1 \cos(3t) + C_2 \sin(3t)$ while **y_h** is $C_0 \exp(2t)$.

09.29.2014, Question 4: Which of the following is **NOT** a solution to **y'(t)=5y+3t**? (a) $y = 8e^{5t}$

- (d) All are solutions.
- (b) $y = -\frac{3}{5}t \frac{3}{25}$ (e) More than one of (a) (c) are not solutions. (c) $y = 8e^{5t} - \frac{3}{5}t - \frac{3}{25}t$
- Clearly (a) is a solution to the homogeneous DE y'=5y since A exp(5t) is y_h . However y_p is (b) since (-3/5 t-3/25)'=-3/5=LHS. RHS = 5(-3/5 t - 3/25) + 3t = -3t - 3/5 + 3t = -3/5 = LHS.(c) is also a solution since it is y_h+y_p . Since (a) is NOT a solution to the nonhomogeneous problem y'=5y+3t the answer is (a).