09.29.2014, Question 1: We are testing the function $f(x)=C_{0} e^{2 x}$ $+C_{1} e^{-2 x}$ as a possible solution to a $D E$. After we substitute the function and its derivative into the DE we get $2 C_{0} e^{2 x}-2 C_{1} e^{-2 x}=-2\left(C_{0} e^{2 x}+C_{1} e^{-2 x}\right)$ $+3 e^{2 x}$. What value of $\boldsymbol{C}_{0}$ will allow this function to work as a solution?
(a) $C_{0}=\frac{3}{4}$
(c) $C_{0}=3$
(e) Any value of $C_{0}$ will work.
(b) $C_{0}=\frac{3}{2}$
(d) $C_{0}=2$
(f) No value of $C_{0}$ will work.

## Look at the coefficients of the $\exp (2 x)$ :

2 C_0 = -2C_0 + $3-->4 C \_0=3-->C \_0=3 / 4$.
Just for fun, look at coefficients of $\exp (-2 x)$ :
$-2 C \_1=2 C \_1-->4 C \_1=0-->C \_1=0$.

This is called the method of undetermined coefficients and is a very powerful solution technique

### 09.29.2014, Question 2: When we have $y^{\prime}=7 y+2 x$ we

 should conjecture $y=C_{0} e^{7 x}+C_{1} x+C_{2}$. Why include the $C_{2}$ ?(a) Because the $7 y$ becomes a constant 7 when we take the derivative and we need a term to cancel this out.
(b) Because when we take the derivative of $C_{1} x$ we get a constant $C_{1}$ and we need a term to cancel this out.
(c) Because this will allow us to match different initial conditions.
(d) This does not affect the equation because it goes away when we take the derivative.

B$y^{\prime}=7 y$ is the homogeneous DE which has exp(7x) as it's solution. The non-homogeneous function is $2 x$ so our guess is $C_{-} 1 x+C \_2$. Plug this in to $y^{\prime}=7 y+2 x$ : $\left(C \_1 x+C \_2\right)^{\prime}=7\left(C \_1 x+C \_2\right)+2 x$ C_1=7C_2 \& 0=7C_1x+2x-> C_1=-2/7, C_2=-2/49 As you can see the C_1x gets balanced by C-_2.

### 09.29.2014, Question 3: We have the equation

 $y^{\prime}=2 y+\sin (3 t)$. What should our conjecture for $y(t)$ be?(a) $y=C_{0} e^{2 t}+\sin 3 t$
(b) $y=C_{0} e^{2 t}+\sin 3 t+\cos 3 t$
(c) $y=C_{0} e^{2 t}+C_{1} \sin 3 t$
(d) $y=C_{0} e^{2 t}+C_{1} \sin 3 t+C_{2} \cos 3 t$
(e) $y=C_{0} e^{2 t}+C_{1} e^{-2 t}+C_{2} \sin 3 t+C_{3} \cos 3 t$
(f) None of the above

DSince the non-homogeneous term is $\sin (3 t)$ the conjecture for $\boldsymbol{y} \_\boldsymbol{p}$ should look like $C_{-} 1 \cos (3 t)+C \_2 \sin (3 t)$ while $\boldsymbol{y} \boldsymbol{h}$ is $C_{-} 0 \exp (2 t)$.
09.29.2014, Question 4: Which of the following is NOT a solution to $y^{\prime}(t)=5 y+3 t$ ?

$$
\text { (a) } y=8 e^{5 t}
$$

(b) $y=-\frac{3}{5} t-\frac{3}{25}$
(c) $y=8 e^{5 t}-\frac{3}{5} t-\frac{3}{25}$
(e) More than one of (a) - (c) are not solutions.

Clearly (a) is a solution to the homogeneous DE $y^{\prime}=5 y$ since $A \exp (5 t)$ is $y_{\_} h$. However $y_{\_} p$ is (b) since $(-3 / 5 t-3 / 25)^{\prime}=-3 / 5=L H S$. $R H S=5(-3 / 5 t-3 / 25)+3 t=-3 t-3 / 5+3 t=-3 / 5=L H S$.
(c) is also a solution since it is $y_{\_} h+y_{\_} p$. Since (a) is NOT a solution to the nonhomogeneous problem $y^{\prime}=5 y+3 t$ the answer is (a).

