09.17.2014, Question 1: What is the equilibrium value of $\frac{dg}{dz} = -\frac{1}{2}g + 3e^{z}$? (a) This system is at equilibrium when $q = 6e^{z}$. (b) This system is at equilibrium when $z = \ln\left(\frac{g}{6}\right)$. (c) Both a and b are true. (d) This equation has no equilibrium. An equilibrium value of g'=f(g,z) is a single

value g^* of the dependent variable g which causes f(g,z) to equal zero. It means that the solution $g(z)=g^*$ is an equilibrium solution of the ODE.

09.17.2014, Question 2: How many equilibria does the DE **y**'**=y**²**+a** have?

You should recognize this ODE as having a saddle-nose bifurcation at *a*=0. In other words, depending on values of *a* there could be 2 (*a*<0) or 1 (*a*=0) or no equilibrium values (*a*>0).

09.17.2014, Question 3: Consider the bifurcation diagram below. If the DE has equilibria at *y*=1, *y*=3, and *y*=5 what is the value of the bifurcation parameter **a**?

When the bifurcation parameter a equals 3 then there are three equilibria (At 1,3 and 5). The question is NOT asking you about the bifurcation value of the system, which in thus case would be a=0.

We can eliminate (a) and (c) since we know what bifurcation diagrams for those DEs would look like. Solving $0=ay^2-1$ means $y^2=1/a$ or $y^*=-1/sqrt(a)$ and $y^*=1/sqrt(a)$ which have the properties of the given curves in the figure (as $a-->0,y^*$ goes to infinity)