09.17.2014, Question 1: What is the equilibrium value of $\frac{d g}{d z}=-\frac{1}{2} g+3 e^{z}$?

(a) This system is at equilibrium when $g=6 e^{z}$.
(b) This system is at equlibrium when $z=\ln \left(\frac{g}{6}\right)$.
(c) Both a and b are true.
(d) This equation has no equlibrium.

An equilibrium value of $g^{\prime}=f(g, z)$ is a single value g^{*} of the dependent variable g which causes $f(g, z)$ to equal zero. It means that the solution $g(z)=g^{*}$ is an equilibrium solution of the ODE.
09.17.2014, Question 2: How many equilibria does the DE $y^{\prime}=y^{2}+a$ have?
A. Zero.
B. One.
C. Two.

F Not Enough Information Is Given.
You should recognize this ODE as having a saddle-nose bifurcation at $a=0$. In other words, depending on values of a there could be $2(a<0)$ or $1(a=0)$ or no equilibrium values $(a>0)$.
09.17.2014, Question 3: Consider the bifurcation diagram below. If the DE has equilibria at $\boldsymbol{y}=1, \boldsymbol{y}=3$, and $\boldsymbol{y}=5$ what is the value of the bifurcation parameter \mathbf{a} ?

> A. $a=-1$ B. $a=0$ C. $a=1$ D. $a=3$

E. Not Enough Information Is Given.

When the bifurcation parameter a equals 3 then there are three equilibria (At 1,3 and 5). The question is NOT asking you about the bifurcation value of the system, which in thus case would be $a=0$.
09.17.2014, Question 4: Which of the following diferential equations is represented by the bifurcation diagram below?

$$
\begin{aligned}
& \text { (a) } y^{\prime}=y^{2}+a \\
& \text { (b) } y^{\prime}=a y^{2}-1 \\
& \text { (c) } y^{\prime}=a y \\
& \text { (d) } y^{\prime}=y^{2}+a y+2
\end{aligned}
$$

We can eliminate (a) and (c) since we know what bifurcation diagrams for those DEs would look like. Solving 0=ay^2-1 means $y^{\wedge} 2=1 / a$ or $y^{*}=-1 /$ sqrt(a) and $y^{*}=1 /$ sqrt(a) which have the properties of the given curves in the figure (as a-->0,y* goes to infinity)

