(09.15.2014) Question 1: The differential equation $\boldsymbol{y}^{\prime}=(\boldsymbol{y}-2)(\boldsymbol{t}-3)$ has equilibrium values of?

$$
\begin{array}{ll}
\text { (a) } y=2 \text { only } & \text { (c) } y=2 \text { and } t=3 \\
\text { (b) } t=3 \text { only } & \text { (d) No equilibrium values }
\end{array}
$$

Equilibrium values are values y^{*} of the dependent variable that cause the differential equation $y^{\prime}=f(t, y)$ to equal zero, i.e. $f\left(t, y^{*}\right)=0$.

(09.15.14) Question 2: Suppose 3 is an equilibrium

 value of a differential equation. This means that(a) the values will approach 3.
(b) if the initial value is below 3 . the values will decrease.
(c) if the initial value is 3 , then all of the values will be 3 .
(d) all of the above.

The meaning of an equilibrium value (or stationary point) means that once the dependent variable equals that value (i.e. At the initial condition) it will remain at that value.
(09.15.2014) Question 3:We know that a given $D E$ is in the form $y^{\prime}=f(y)$ where f is a continuous function of y. Suppose that $f(6)=0, f(14)=0$ and $y(10)=10$.
(a) This means that $y(0)$ must have been between 6 and 14 .
(b) This means that $y(20)=0$ is impossible.
(c) This means that $y(20)=20$ is impossible.
(d) All of the above.
(e) None of the above.

(09.15.2014) Question 4: Wye know that a given DE is in the form $y^{\prime}=f(y)$ where f is a continuous function of y . Suppose that $f(2)=3$ and $y(0)=0$. Which of the following is impossible?
(a) $y(10)=6$
(d) $y(-10)=-6$
(b) $y(10)=-6$
(e) All of these are possible
(c) $y(-10)=6$

No way
to get from origin
(09.15
parameters. This differential equation will have
equilibrium if
B. $b=0$
C. $a=1$
r en
Equilibrium value
$a_{f}+b=0 \Rightarrow f=-b / a$.
So $+a=0$ there is no equilibrium!
(09.15.2014) Question 6: TRUE or FALSE. "A equilibria." A. TRUE B. FALSE Sure! If $y^{\prime}=f(y)$ can have infinite roots. example.

$$
f(y)=\sin (y)
$$

