HW Set 9: Sec 3.7 (1,2*,6); Chap 3 Rev (3,4,6,10,13,20*); Sec 5.1 (3,4,5,8,18,20%)

1.

Table 3.2
Possibilities for linear systems
type condition on A examples
sink M < <0 Sec. 3.7.Fig. 3.52
saddle A =0<2o See. 3.3, Fig. 3.12-3.14
source 0<iy <k See. 3.3, Fig. 3.19
spiral sink A=axip.a<0,B#£0 Sec.3.1.Fig.32 and 34
spiral source A=auxif.a=0,£0 See. 3.4, Fig. 3.29-3.30
center M =xif.8#0 Sec.3.1,Fig. 3.1 and 3.3
Sec. 3.4, Fig.3.28
sink A =4 <0 Sec. 3.5, Fig. 3.35-3.36
(special case) One line of eigenvectors
source O=<ii =M Sec.3.5,Ex.2
(special case) One line of eigenvectors
sink AM=i2 =0 Sec.3.5.Ex. 23
(special case) Every vector is eigenvector
source O0=ii =4 Sec.3.5,Ex. 23
(special case) Every vector is eigenvector
no name A =<ir=0 See. 3.5, Fig. 3.39-3.40
no name 0=Xi; < A2 Sec.3.5.Ex. 19
no name A =4 =0 Sec.35,Ex.21
One line of eigenvectors
no name AMl=42=0 entire plane of equilibrium points

Every vector is an eigenvector
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HW Set 9: Sec 3.7 (1,2*,6); Chap 3 Rev (3,4,6,10,13,20*); Sec 5.1 (3,4,5,8,18,20%)

2. (a) \ 1|) / 5
v 5
\/

(b) The curve in the trace-determinant plane 1s the horizontal line given by DD = 2. The eigenvalues
are the roots of A2 — ai + 2, which are

[ =]

I

a_. a? —8

2 2

So we have complex eigenvalues if |a| < 2+/2, real eigenvalues if |a| > 2+/2. and repeated
eigenvalues if ¢ = +2+4/2. Glancing at the trace-determinant plane, we see that we have a
sink with real eigenvalues if @ < —24/2, a spiral sink if —24/2 < a < 0, and spiral source if
0 < a < 2+/2. and a source with real eigenvalues if a > 2+/2.

(¢) Bifurcations occur at a = —2+/2, where we have a sink with repeated eigenvalues, at a = 2+/2,
where we have a source with repeated eigenvalues, and at a = (. where we have a center.

6. (a) D
7 =
\ /= i
-3 3
L*
iy
(b) The curve in the trace-determinant plane is not a curve at all. For all values of a, T = —1 and
D = —6. So the curve is simply a point in the trace-determinant plane. For all a, we have a
saddle.

(¢) There are no bifurcations, since the origin is always a saddle. (There is nothing special about
a = 0, by the way.)
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HW Set 9: Sec 3.7 (1,2*,6); Chap 3 Rev (3,4,6,10,13,20*); Sec 5.1 (3,4,5,8,18,20%)

3. The system has eigenvalues —2 and 3. One eigenvector y
associated with A = 3 1s (1, 0), and one eigenvector asso-
ciated with A = —2 is (0, 1). The general solution is

1 0
Y(1) = ke ke :
(7) 1€ (0)+ 2€ (l)

4. By definition, the zero vector, Y1, is never an eigenvector. We can check the others by computing

AY. For example,
2

so Y» 1s an eigenvector (with eigenvalue A = 1). On the other hand,

1
AY3:( -)1
J

which 1s not a scalar multiple of Y3, so Y3 is not an eigenvector. Also, AY;s = 3Y4, so Y4 1s an
eigenvector (with eigenvalue A = 3). Since we know that Y> is an eigenvector and Ys = —2Y», Y5 is
also an eigenvector. The vectors Y, and Y4 are two linearly independent eigenvectors corresponding
to different eigenvalues. Therefore, Y¢ cannot be an eigenvector because it is neither a scalar multiple
of Y, nor Y.

[ I e ]

AYg:A(

6. Written in coordinates, the system is dx/df = 0 and dv/dt = x — v. Hence, the equilibrium points
are all points on the line y = x.
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10. Written in terms of coordinates, the system is dx /dt = v and dy/dt = 0. From the second equation,
we see that v(r) = k», where k> 1s an arbitrary constant. Then x(¢) = k»t + k1, where & 1s another
arbitrary constant. In vector notation, the general solution 1s

kot + k1
Y(r) = ( ks ) .

y

[® 1]
L

Iy

A

13. True. Linear systems have solutions that consist of just sine and cosine functions only when the
eigenvalues are purely imaginary (that is, of the form +iw). In this case, the sine and cosine terms
are of the form sin @t and cos wr. For the first coordinate of Y(7) to be part of a solution, we would
have to have @ = 2, but the second coordinate would force @ = 1. So this function cannot be the

solution of a linear system.
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HW Set 9: Sec 3.7 (1,2*,6); Chap 3 Rev (3,4,6,10,13,20*); Sec 5.1 (3,4,5,8,18,20%)

20. (a) The trace T is a, and the determinant I is —3a. Therefore, the curve in the trace-determinant
plane1is D = —3T.

D
54+

36T

184

18 12 -6 | '

Y

(b) The line D = —3T crosses the parabola 72 — 4D = 0 at two points—at (7, D) = (—12, 36)
ifa = —12 and at (T, D) = (0,0) if @ = 0. Therefore, bifucations occur at a = —12 and
at a = 0. The portion of the line for which @ < —12 corresponds to a positive determinant
and a negative trace such that 72 — 4D < 0. The corresponding phase portraits are real sinks.
If a = —12, we have a sink with repeated eigenvalues. If —12 < a < 0, we have complex
eigenvalues with negative real parts. Therefore, the phase portraits are spiral sinks. If a = 0,
we have a degenerate case where the y-axis is an entire line of equilibrium points. Finally, if

a > 0, the corresponding portion of the line 1s below the T -axis, and the phase portraits are
saddles.
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3. (a) The linearized system is

We can see this either by “dropping higher-order terms™ or by computing the Jacobian matrix
-2 |
2x -1

(b) The eigenvalues of the linearized system are —2 and —1, so (0, 0) is a sink.

and evaluating it at (0, 0).

(¢) The vector (1, 0) is an eigenvector for eigenvalue —2 and (1, 1) is an eigenvector for the eigen-
value —1.
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(d) By computing the Jacobian matrix

2 |
2x -1

and evaluating at (2, 4), we see that linearized system at (2, 4) 1s

d.

T =B
d’1
=t

Its eigenvalues are (—3 + \/ﬁ)/z, so (2, 4) is a saddle

54

[
2 ==
=
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4. (a) The equilibrium points occur where the vector field is zero, that is, at solutions of

—x =0
—4x3 +y =0.

So.x = y = 0 is the only equilibrium point.
(b) The Jacobian matrix of this system is

-1 0
—12x2 1 )’
-1 0
01/

dx _
E = —
dy
FTRR
(we could also see this by “dropping the higher order terms™).
(¢) The eigenvalues of the linearized system at the origin are —1 and 1, so the origin is a saddle.

The linearized system decouples, so solutions approach the origin along the x-axis and tend
away form the origin along the y-axis.

which at (0, 0) is equal to

So the linearized system at (0, 0) is
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5.

(a) Using separation of variables (or simple guessing), we have x(7) = xpe ™.

(b) Using the result in part (a), we can rewrite the equation for dv/dr as

dy

ay 3t
dr

=y —4xge”

This first-order equation is a nonhomogeneous linear equation.
The general solution of its associated homogeneous equation is ke'. To find a particular
solution to the nonhomogeneous equation, we rewrite it as

A L 3 3t
= —yv=—dxge ',

and we guess a solution of the form y, = ae™>* . Substituting this guess into the left-hand side
of the equation yields

dy -
d_.,rp —vp = —4ae 3,

Therefore, y, 1s a solution if ¢ = .1'3. The general solution of the original equation is
v(t) = .1'315’_3£ +keé'.
To express this result in terms of the initial condition y(0) = yp, we evaluate at r = 0 and note
that X = yp — xg’ . We conclude that
y(r) = xé’e_g" + (vo — .1'3)(3“.

(¢) The general solution of the system 1s

x(r) = xge™*

¥(1) = x3e > + (o — xg)e".

(d) For all solutions, x(r) — 0 as r — 00. For a solution to tend to the origin as 1 — 00, we must

have y(#) — 0, and this can happen only if v — Xé’ =0.
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(e) Since x = xge™", we see that a solution will tend toward the origin as r — —oc only if xg = 0.

In that case, y(r) = yoe',and v(r) — Oasr — —o0.

()

(g) Solutions tend away from the origin along the y-axis in both systems. In the nonlinear system,
solutions approach the origin along the curve y = x> which is tangent to the x-axis. For the lin-
earized system, solutions tend to the origin along the x-axis. Near the origin, the phase portraits
are almost the same.
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8. (a) The equilibrium points are (0, 0), (0, 30), and (10, 0). To determine the type of each equilib-
rium point, we compute the Jacobian matrix, which 1s

—2x—y+10 —X
—2y —2x —2y+430 J°

and evaluate it at the point. At (0, 0), the Jacobian is
10 0O
0 30 /)
and the eigenvalues are 10 and 30. Thus, the origin 1s a source. At (0, 30), the Jacobian matrix
18
=20 0
—60 —-30 /°
and the eigenvalues are —20 and —30. So (0, 30) is a sink. The Jacobian at (10, 0) is
—10 -10
0 10 ’

and the eigenvalues are —10 and 10. Therefore, (10, 0) is a saddle.
(b) y y

¥
32'1‘
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18. (a) The equation x? — a = 0 has no solutions if @ < 0.
(b) The equilibrium points are (£,/a, 0).
(e¢) When a = 0, the only equilibrium point is (0, 0).

(d) The Jacobian matrix is
2x 0
—2xy —x?-1)

(o)

which has eigenvalues —1 and 0. So (0, 0) is a node.

At (0, 0), the Jacobian matrix is

20. (a) The equilibrium points are (£./a, a), so there are no equilibrium points if @ < 0, one equilib-
rium point if @ = 0, and two equilibrium points if @ > 0

(b) If @ = 0, the equilibrium point at the origin has eigenvalues 0 and 1 and is a node. If a > 0,
the system has two equilibrium points, a saddle at (/a, a) with eigenvalues —2,/a and 1 and
a source at (—+/a, a) with eigenvalues 2./a and 1. A bifurcation occurs at a = 0 because the
number of equilibrium points changes. It also reasonable to say that there is a bifurcation at
a = 1/4 because the source at (—./a, a) has repeated eigenvalues. For all other positive values
of a, these eigenvalues are real and distinct.

(¢) Note that for all values of the parameter a, the line y = @ is invariant. If @ < 0, all solutions
come from and go to infinity. If @ = 0, most solutions come from and go to infinity, but there
are separatrices associated to the equilibrium point at the origin. If @ > 0, some solutions come
from and go to infinity, but many solutions come from the source at (—+/a, @) and go to infinity.
There is also a separating solution along the line y = a that comes from the source at (—./a, a)
and goes to the saddle at ( /a, a).
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Phase portrait fora < 0 Phase portrait fora =0 Phase portrait fora = 0
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