HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*,23*); Sec 3.5 (3,4,9,10,12,18*,23*)

3. As we computed in Exercise 3 of Section 3.2, the

eigenvalues are Ay = —3 and A» = —6. The eigen-
vectors (x1, v1) for the eigenvalue Ay = —3 satisfy
v1 = —x1. and the eigenvectors for Ay = —6 satisfy

x2 = 2v». The equilibrium point at the origin is a sink.

4. As we computed in Exercise 6 of Section 3.2, the

eigenvalues are Ay = —4 and A» = 9. The eigen-
vectors (x1, v1) for the eigenvalue Ay = —4 satisfy
9x1; = —4y;, and the eigenvectors (x7, o) for Ao = 9

satisfy the equation yv» = x3. The equilibrium point at
the origin is a saddle.

7. As we computed in Exercise 9 of Section 3.2, the
eigenvalues are

344/5 345
1= 5 and lg: > .

- .

The eigenvectors (x, y1) for the eigenvalue A satisfy
vi = (—1+ NG /2, and the eigenvectors (x2, y2)
for A» satisfy y» = (-1 — ﬂ)xzﬁ. The equilibrium

point at the origin is a source.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

8. As we computed in Exercise 10 of Section 3.2, the

eigenvalues are Ay = —2 and A» = —3. The eigen-
vectors (x1, v1) for the eigenvalue A; = —2 satisfy
x1 = 2y;. and the eigenvectors (x2, y2) for A = —3

satisfy xo = y». The equilibrium point at the origin is
a sink.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

20. (a) The characteristic equation is
Q2-M(-2-1-12=22-16=0,

so the eigenvalues are Ay = —4 and A» = 4. Therefore, the equilibrium point at the origin is a
saddle.

(b) To find all the straight-line solutions, we must calculate the eigenvectors. For the eigenvalue
A1 = —4, we have the simultaneous equations

2x1 + 6y1 = —4x
2x1 — 2y =4y,

and we obtain y; = —x;. In other words, all vectors on the line y; = —x; are eigenvectors
for A;. Therefore, any solution of the form e ¥ (xy, —x;) for any x1 is a straight-line solution
corresponding to the eigenvalue A; = —4.
To calculate the eigenvectors associated to the eigenvalue A» = 4, we must solve the equa-
tions
2x7 + 6y =4y

2xp — 2y =4y,
and we obtain xo = 3y;. Therefore, any solution of the form e¥(3y,, y2) for any y, is a

straight-line solution corresponding to the eigenvalue A, = 4.

() In the phase plane, the only solution curves that approach the origin are those whose initial
conditions lie on the line y = —x. All other solution curves eventually approach those that
correspond to the line x = 3y.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

The initial condition A = (1, —1) lies on the line
v = —x. Therefore, it corresponds to a straight-
line solution. In fact, the formula for its solution is

e H(1,-1).

The initial condition B = (3, 1) lies on the line x =
3y. Therefore, it corresponds to a straight-line solu-
tion, and the formula is e¥ (3, 1).

The solution curve that corresponds to the initial con-
dition C = (0, —1) enters the third quadrant and even-
tually approaches line x = 3y. From the phase plane,
we see that x(7) is decreasing for all + = 0. We
also see that y(r) increases initially, reaches a nega-
tive maximum value, and then decreases in an expo-
nential fashion. Since the solution curve crosses the
line y = x, we know that these two graphs cross. By
examining the line where dv/dt = 0, we see that these
two graphs cross at precisely the same time as y(7) at-
tains its maximum value.

The solution curve that corresponds to the initial con-
dition D = (—1, 2) moves from the second quadrant
mnto the first quadrant and eventually approaches the
line x = 3y. From the phase plane, we see that x(z)
is increasing for all + = 0. We also see that v(r)
decreases initially, reaches a positive minimum value,
and then increases in an exponential fashion. Since
this solution curve crosses the line vy = x, we know
that these two graphs cross. By examining the line for
which dy/dt = 0, we see that these two graphs cross
at precisely the same time as y(#) attains its minimum
value.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

1. Using Euler’s formula, we can write the complex-valued solution Y.(7) as

Y, (1) = o130 ( 2+1 )
1

_ ot [ 21
1

2+i
:et{cosir—l—r'sin_%r)( lr )

;[ 2cos3t —sin3r .+ [ 2sin3r 4 cos3t
=e +1e . .
cos 3¢ sin 3t
Hence, we have

2 cos 3r — sin 3¢ cos 3r 4+ 2 sin 3¢
Y.(t)=¢€ d Yiu(t)=¢ .
e(f) = ¢ ( cos 37 ) an im(7) = ( sin 3t )

The general solution is

2 cos 3r — sin 37 cos 3t 4+ 2 sin 3¢
Y(t) = ke’ + ket .
() e ( cos 3t ) 2¢ ( sin 3t )
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

2. The complex solution is

. 1
Y.(1) = 24501 ,
e(t) 43

so we can use Fuler’s formula to write

. 1
Y. (1) = o(—2+501
e(?) 43

_ o2 it -
4 —3i

1

. ..

= 5t + St

e " (cos i sin }(4_3{_)

cos 57 sin 5¢
—=e _ . tie L _ .
4 cos 5t + 3sin5r 4sin 5t — 3cos 5t
Hence, we have

5t sin 5¢
Ye(t) =e X cos and Yiu(r) =e % .
re(f) ( 4 cos 5t + 3 sin 5¢ im(?) 4sin 57 — 3cos 5t

The general solution is

Y(0) = kye? cos 5t | + hpe | -sin 5t ) .
4 cos 5r + 3sin 5¢ 4 sin 5t — 3 cos 5t
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

3. (a) The characteristic equation is

(=) +4=22+4=0,

and the eigenvalues are A = +2i.

(b) Since the real part of the eigenvalues are 0, the origin is a center.

(e) Since A = +2i, the natural period is 27 /2 = m, and the natural frequency is 1/7.

(d) At (1, 0), the tangent vector is (—2, 0). Therefore, the direction of oscillation is clockwise.

(e) According to the phase plane, x(#) and v(r) are periodic with period 7. At the initial condition
(1, 0), both x(r) and y(¢) are initially decreasing.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

4. (a) The characteristic equation is
(2—A)(6—2)+8=21%—8x+20,

and the eigenvalues are A =4 £ 27.
(b) Since the real part of the eigenvalues is positive, the origin is a spiral source.
(e) Since A = 4 + 2i, the natural period is 271 /2 = 7, and the natural frequency is 1/7.
(d) At the point (1, 0), the tangent vector is (2, —4). Therefore, the solution curves spiral around

the origin in a clockwise fashion.
(e) Since dY/dt = (4,2) at Yo = (1, 1), both x(#) and y(¢) increase imtially. The distance be-
tween successive zeros is , and the amplitudes of both x(7) and y(7) are increasing.

10+

. .
1
104 ()

(@a—A)(a—2r)+b>=2%—2ar + (a®> + %),

16. The characteristic polynomial is

so the eigenvalues are

2a £ \4a? — 4> + %) - v —4p?
> =

A= =a++—-b2

Since b* > 0, the eigenvalues are complex. In fact, they are a =+ bi.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

23. (a) The corresponding first-order system is

dy
E =v
dv
—- =—qy — pv.
(b) The characteristic polynomuial is

(—A)(=p =V +q =2+ ph+q,

so the eigenvalues are A = (—p % /p? — 4¢g )/2. Hence, the eigenvalues are complex if and
only if p> < 4q. Note that ¢ must be positive for this condition to be satisfied.

(¢) In order to have a spiral sink, we must have p? < 4qg (to make the eigenvalues complex) and
p > 0 (to make the real part of the eigenvalues negative). In other words, the origin is a spiral
sinkif and onlyif ¢ > O and 0 < p < 2./g. The origin is a center if and only if ¢ = 0 and
p = 0. Finally, the origin is a spiral source if and only if ¢ > O and —-2,/7 < p < 0.

(d) The vector field at (1,0) 1s (0, —g). Hence, if ¢ > 0, then the vector field points down along
the entire y-axis, and the solution curves spiral about the origin in a clockwise fashion. Note
that ¢ must be positive for the eigenvalues to be complex, so the solution curves always spiral
about the origin in a clockwise fashion as long as the eigenvalues are complex.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

3. (a) The characteristic equation is
(=2—M(—4-)+1=(A+3)*=0,
and the eigenvalue is A = —3.
(b) To find an eigenvector, we solve the simultaneous equations
—2x —v=-3x
x —4y=—-3y.

Then, v = x, and one eigenvector is (1, 1).
() Note the straight-line solutions along the line y = x.
¥

3

(d) Since the eigenvalue is negative, any solution on the line y = x tends toward the origin along
v = x as t increases. According to the direction field, every solution tends to the origin as
t increases. The solutions with initial conditions that lie in the half-plane v = x eventually
approach the origin tangent to the half-line y = x with y < 0. Similarly, the solutions with
initial conditions that lie in the half-plane v < x eventually approach the origin tangent to the
line y = x with y = 0.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

(e) At the point Yo = (1,0), dY/dt = (-2, 1). Therefore, x(7) initially decreases and v(r) ini-
tially increases. The solution eventually approaches the origin tangent to the line y = x. Since
the solution curve never crosses the line y = x, the graphs of x(7) and v(z) do not cross.

X,y

4. (a) The characteristic polynomial is
(—A)(=2—)+1=22+224+1= 1+ 1%

so there 1s only one eigenvalue, A = —1.
(b) To find an eigenvalue we solve

y=—x
—x —2y=—)
These equations both simplify to y = —x, so (1, —1) is one eigenvector.
(e) Note the straight-line solutions along the line y = —x.

—l-———-——-~+———————1— x
-5 3

_31
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*,23*); Sec 3.5 (3,4,9,10,12,18*,23*)

(d) Since the eigenvalue is negative, all solutions approach the origin as 7 increases. Solutions with
initial conditions on the line y = —x approach the origin along v = —x. Solutions with initial
conditions that lie in the half-plane y > —x approach the origin tangent to the half-line y = —x
with y < 0. Solutions with initial conditions that lie in the half-plane v < —x approach the
origin tangent to the half-line y = —x with y > 0.

X

(e) At the point Yo = (1,0), dY/dt = (0, —1). Therefore, x(¢) assumes a maximum at r = 0 and
then decreases toward 0. Also, y(7) becomes negative. Then, it assumes a (negative) minimum,
and finally it 1s asymptotic to 0 without crossing y = 0.

X,y
[
e ¢
! y(t) 3
_] =

9. (a) By solving the quadratic equation, we obtain

P + /a2 — 48 _
2
Therefore, for the quadratic to have a double root, we must have
o’ — 46 =0.

(b) If zero is a root, we set A = 0 in A> + aA + B = 0, and we obtain g = 0.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

10. (a) To compute the limit of te* as t — oo if A > 0, we note that both 7 and e*’ go to infinity as 7
goes to infinity. So re*’ blows up as  tends to infinity, and the limit does not exist.

(b) To compute the limit of ze* as r — oo if A < 0, we write

lim te™ = lim ! = lim

f—00 t—o00 g—M t—oo —je— At

where the last equality follows from L Hépital's Rule. Because e tends to infinity as r — oo
(—A = 0), the fraction tends to 0.

12. The characteristic polynomial of A 1s
det(A — AI) = A% — (a + d)A + (ad — be) = A% — tr(A)A + det(A)

(see Section 3.2). A quadratic polynomial has only one root if and only if its discriminant is 0. In
this case, the discriminant of det(A — AI) is tr(A)? — 4 det(A).
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

18. (a) The characteristic equation is
(2—-1)(6—-21)—12=2%—-81=0.

Therefore, the eigenvalues are L. = 0 and A = 8.

(b) To find the eigenvectors V; associated to the eigenvalue A = 0, we must solve AV; =0V; =0
where A is the matrix that defines this linear system. (Note that this is the same calculation we
do if we want to locate the equilibrium points.) We get

2x1+4y, =0
3x1 +6y1 =0,

where V; = (x1, ¥1). Hence, the eigenvectors associated to A = 0 (as well as the equilibrium
points) must satisfy the equation x; + 2y; = 0.

To find the eigenvectors V; associated to the eigenvalue . = 8, we must solve AV, = 8V>.
We get

2x2 + 4y, = 8x2
3x2 + 6y2 =8y,
where Vo = (x2, ¥2). Hence, the eigenvectors associated to A = 8 must satisfy 2y» = 3x».
(¢) The equation x; + 2y; = 0 specifies a line of equilibrium points. Since the other eigenvalue

is positive, solution curves not corresponding to equilibria move away from this line as ¢ in-
creases.
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*23%); Sec 3.5 (3,4,9,10,12,18*,23%)

(d) Ast increases, both x(#) and y(r) increase exponentially. As ¢ decreases, both x and y approach
constants that are determined by the line of equilibrium points.

x,¥
10+
y(t) —
sl AN
x(t)
} — ¢
—0.5 | 0.5

(e) To form the general solution, we must pick one eigenvector for each eigenvalue. Using part (b),
we pick V; = (-2, 1), and V, = (2, 3). We obtain the general solution

_2 2
Y(:):kl( | )+A—233’( ; )

(f) To determine the solution whose initial condition is (1, 0), we let 1 = 0 in the general solution

and obtain the equations
r -2 P 2 1
+k = :
T “\ 3 0

Therefore, &y = —3/8 and k» = 1/8. The particular solution is

8
Y(r) = ( ) )
_ o8
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HW SET 8: Sec 3.3 (3,4,7,8,20%); Sec 3.4 (1,2,3,4,16*,23*); Sec 3.5 (3,4,9,10,12,18*,23*)

23. (a) The characteristic polynomial is (a — A)(d — 1), so the eigenvalues are @ and d.
(b) If a # d, the lines of eigenvectors for @ and d are the x- and y-axes respectively.

(e) If a = d < 0, every nonzero vector is an eigenvector (see Exercise 14), and all the vectors point
toward the origin. Hence, every solution curve is asymptotic to the origin along a straight line.

The general solution is Y(7) = e® Yy, where Yy is the initial condition.
(d) The only difference between this case and part (c) is that the arrows in the vector field are re-
versed. Every solution tends away from the origin along a straight line.

Again the general solution is Y(¢) = ¢¥Yy, where Y is the initial condition.
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