3. The equilibrium points occur at solutions of $dy/dt = y^2 - ay + 1 = 0$. From the quadratic formula, we have

$$y = \frac{a \pm \sqrt{a^2 - 4}}{2}.$$

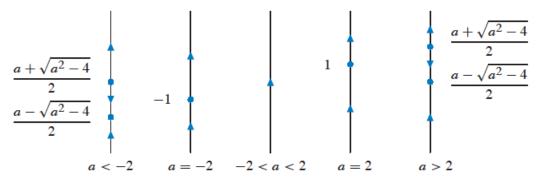
If -2 < a < 2, then $a^2 - 4 < 0$, and there are no equilibrium points. If a > 2 or a < -2, there are two equilibrium points. For $a = \pm 2$, there is one equilibrium point at y = a/2. The bifurcations occur at $a = \pm 2$.

To draw the phase lines, note that:

- For -2 < a < 2, $dy/dt = y^2 ay + 1 > 0$, so the solutions are always increasing.
- For a = 2, $dy/dt = (y 1)^2 \ge 0$, and y = 1 is a node.
- For a = -2, $dy/dt = (y + 1)^2 \ge 0$, and y = -1 is a node.
- For a < -2 or a > 2, let

$$y_1 = \frac{a - \sqrt{a^2 - 4}}{2}$$
 and $y_2 = \frac{a + \sqrt{a^2 - 4}}{2}$.

Then dy/dt < 0 if $y_1 < y < y_2$, and dy/dt > 0 if $y < y_1$ or $y > y_2$.

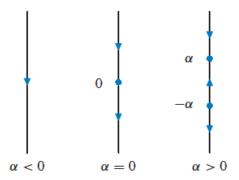


The five possible phase lines.

6. The equilibrium points occur at solutions of $dy/dt = \alpha - |y| = 0$. For $\alpha < 0$, there are no equilibrium points. For $\alpha = 0$, there is one equilibrium point, y = 0. For $\alpha > 0$, there are two equilibrium points, $y = \pm \alpha$. Therefore, $\alpha = 0$ is a bifurcation value.

To draw the phase lines, note that:

- If $\alpha < 0$, $dy/dt = \alpha |y| < 0$, so the solutions are always decreasing.
- If $\alpha = 0$, dy/dt < 0 unless y = 0. Thus, y = 0 is a node.
- For $\alpha > 0$, dy/dt > 0 for $-\alpha < y < \alpha$, and dy/dt < 0 for $y < -\alpha$ and for $y > \alpha$.



10. Note that $0 < e^{-y^2} \le 1$ for all y, and its maximum value occurs at y = 0. Therefore, for $\alpha < -1$, dy/dt is always negative, and the solutions are always decreasing.

If $\alpha = -1$, dy/dt = 0 if and only if y = 0. For $y \neq 0$, dy/dt < 0, and the equilibrium point at y = 0 is a node.

If $-1 < \alpha < 0$, then there are two equilibrium points which we compute by solving

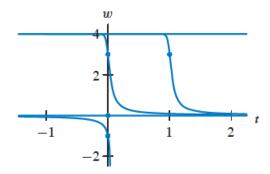
$$e^{-y^2} + \alpha = 0.$$

We get $-y^2 = \ln(-\alpha)$. Consequently, $y = \pm \sqrt{\ln(-1/\alpha)}$. As $\alpha \to 0$ from below, $\ln(-1/\alpha) \to \infty$, and the two equilibria tend to $\pm \infty$.

If $\alpha \ge 0$, dy/dt is always positive, and the solutions are always increasing.

- 13. (a) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii), and (vi). Since y = 0 is the only equilibrium point for A < 0, this only corresponds to equation (iii).
 - (b) The phase line corresponding to A=0 is the only phase line with y=0 as an equilibrium point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to A<0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the phase lines corresponding to A>0, note that dy/dt<0 for $-\sqrt{A}< y<\sqrt{A}$. Consequently, the bifurcation diagram corresponds to equation (v).
 - (c) The phase line corresponding to A=0 is the only phase line with y=0 as an equilibrium point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to A<0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the phase lines corresponding to A>0, note that dy/dt>0 for $-\sqrt{A}< y<\sqrt{A}$. Consequently, the bifurcation diagram corresponds to equation (iv).
 - (d) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii), and (vi). The phase lines corresponding to A > 0 only have two nonnegative equilibrium points. Consequently, the bifurcation diagram corresponds to equation (i).
- 18. (a) For all $C \ge 0$, the equation has a source at P = C/k, and this is the only equilibrium point. Hence all of the phase lines are qualitatively the same, and there are no bifurcation values for C.
 - (b) If P(0) > C/k, the corresponding solution $P(t) \to \infty$ at an exponential rate as $t \to \infty$, and if P(0) < C/k, $P(t) \to -\infty$, passing through "extinction" (P = 0) after a finite time.

20.

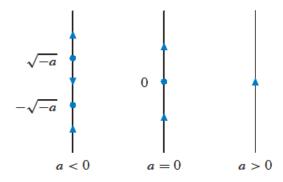


- 30. The function f(y) has two zeros, one positive and one negative. We denote them as y_1 and y_2 , where $y_1 < y_2$. So the differential equation dy/dt = f(y) has two equilibrium solutions, one for each zero. Also, f(y) > 0 if $y_1 < y < y_2$ and f(y) < 0 if $y < y_1$ or if $y > y_2$. Hence y_1 is a source and y_2 is a sink.
- 31. The function f(y) has three zeros. We denote them as y_1 , y_2 , and y_3 , where $y_1 < 0 < y_2 < y_3$. So the differential equation dy/dt = f(y) has three equilibrium solutions, one for each zero. Also, f(y) > 0 if $y < y_1$, f(y) < 0 if $y_1 < y < y_2$, and f(y) > 0 if $y_2 < y < y_3$ or if $y > y_3$. Hence y_1 is a sink, y_2 is a source, and y_3 is a node.

41. The equilibrium points occur at solutions of $dy/dt = y^2 + a = 0$. For a > 0, there are no equilibrium points. For a = 0, there is one equilibrium point, y = 0. For a < 0, there are two equilibrium points, $y = \pm \sqrt{-a}$.

To draw the phase lines, note that:

- If a > 0, $dy/dt = y^2 + a > 0$, so the solutions are always increasing.
- If a = 0, dy/dt > 0 unless y = 0. Thus, y = 0 is a node.
- For a < 0, dy/dt < 0 for $-\sqrt{-a} < y < \sqrt{-a}$, and dy/dt > 0 for $y < -\sqrt{-a}$ and for $y > \sqrt{-a}$.



- (a) The phase lines for a < 0 are qualitatively the same, and the phase lines for a > 0 are qualitatively the same.
- (b) The phase line undergoes a qualitative change at a = 0.