HW Set 3 Solutions: 1.4(2,6,11,15);1.5(2,3,12,14,15); 1.6(2,7,8,19,20,30,31,41)

Table 1.2 y
Results of Euler’s method (yx 14
rounded to two decimal places)
0.751 . o -
k t Vi my *
0 0 1 1 057
1 025 0.75 -0.3125 025+
2 0.5 0.67 0.0485
1 1 1 1
- - T T T T 3
3 0.75 0.68 0.282 0.25 05 0.75 1
4 1.0 0.75
6.
Table 1.6 w
Results of Euler's method (shown 4T
rounded to two decimal places) " " - " .
3 —
k T Wy M * - " "
o 0 0 3 T
1 05 1.5 3.75 1+
2 1.0 3.38 —1.04 | | |
3 15 255 158 T, 3 4 s !
4 2.0 3.35 —1.50
5 25 2.59 146
0 3.0 3.32 —1.40
7 35 2.62 136
8 4.0 331 —1.31
9 45 2.65 1.28
10 5.0 3.29

11. As the solution approaches the equilibrium solution corresponding to w = 3, its slope decreases. We
do not expect the solution to “jump over” an equilibrium solution (see the Existence and Uniqueness
Theorem in Section 1.5).
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HW Set 3 Solutions: 1.4(2,6,11,15);1.5(2,3,12,14,15), 1.6(2,7,8,19,20,30,31,41)

15.
Table 1.13

Results of Euler’s method with
At = 1.0 (shown to two

decimal places)
koot Yk mg
0 0 1 1
1 1 2 141
2 2 341 1.85
3 3 526 2.29
4 4 756
Table 1.14
Results of Euler’s method with At = 0.5 (shown to two decimal places)
ko % Yk my ko % Yk my
0 0 1 1 5 25 4.64 2.15
1 03 1.5 1.22 6 3.0 5.72 2.39
2 1.0 211 145 7 35 6.91 2.63
3 1.5 2.84 1.68 8 4.0 8.23

+ 20 3.68 1.92

Table 1.15
Results of Euler's method with At = 0.25 (shown to two decimal places)

k fk Yk mj k t Yk mp
0 ] 1 1 9 2.25 4.32 2.08
1 0.25 1.25 1.12 10 2.50 4,84 2.20
2 0.50 1.53 1.24 11 2.75 5.39 2.32
3 0.75 1.84 1.36 12 30 597 244
4 1.0 2.18 1.48 13 3.25 6.58 2.56
5 1.25 2.55 1.60 14 3.50 723 2.69
6 1.50 294 1.72 15 3.75 7.90 281
7 1.75 3.37 1.84 16 4.0 8.60

8 2.0 3.83 1.96
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HW Set 3 Solutions: 1.4(2,6,11,15);1.5(2,3,12,14,15); 1.6(2,7,8,19,20,30,31,41)

The slopes in the slope field are positive and increasing. Hence, the graphs of all solutions are
concave up. Since Euler’s method uses line segments to approximate the graph of the actual solution,
the approximate solutions will always be less than the actual solution. This error decreases as the step

size decreases.

I t } ot

1 2 3 4

2. Since y(0) = 1 is between the equilibrium solutions y»(¢#) = 0 and y3(t) = 2, we must have
0 < v(r) < 2 for all r because the Uniqueness Theorem implies that graphs of solutions cannot
cross (or even touch in this case).

3. Because y2(0) < v(0) < v1(0), we know that
—1* = (1) < y(t) < (D) =1 +2
for all . This restricts how large positive or negative y(#) can be for a given value of ¢ (that is,

between —t% and r + 2). Ast — —00, y(f) — —00 between —t% and 1 + 2 (y(f) — —00C as
t — —0ox at least linearly, but no faster than quadratically).

12. (a) Note that

dn _d( 1\ 1
E_ds(:_1)__(:_1)2__(““})

dp _d( 1\ 1
?_ dr (1_2) - (1—2)2 - (1’2(3‘:'} »

so both yy(t) and y»(¢) are solutions.

(b) Note that v1(0) = —1 and y2(0) = —1/2. If ¥(¢) is another solution whose initial condition
satisfies —1 < y(0) < —1/2, then y1(#) < v(r) < w2(t) for all t by the Uniqueness Theorem.
Also, since dy/dt < 0, y(t) is decreasing for all r in its domain. Therefore, y(r) — 0 as
t — —00, and the graph of y(r) has a vertical asymptote between+ = 1 and r = 2.
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HW Set 3 Solutions: 1.4(2,6,11,15);1.5(2,3,12,14,15); 1.6(2,7,8,19,20,30,31,41)

14. (a) The equation is separable, so we obtain

dt
A+ Ddy = | —.
f(}+)} P

Solving for y with help from the quadratic formula yields the general solution

v(t) = —1 £1+In(c@t —2)?)

where c is a constant. Substituting the initial condition y(0) = 0 and solving for ¢, we have

0=—-1+/1+In(0c),

and thus ¢ = 1/4. The desired solution is therefore

¥(1) = =141+ In((1 —1/2)?)

(b) The solution is defined only when 1 + In((1 — 7/2)?) > 0, that is, when |t — 2| > 2//e.

Therefore. the domain of the solution is
t<2(1 —1/4/e).
() Ast — 2(1 — 1//€).then 1 + In((1 — r/2)*) — 0. Thus

lim v(r) = —1.
t—>2(1-1//2)

Note that the differential equation is not defined at y = —1. Also, note that

Lim v(r) = oc.
t——00
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HW Set 3 Solutions: 1.4(2,6,11,15);1.5(2,3,12,14,15); 1.6(2,7,8,19,20,30,31,41)

15. (a) The equation is separable. We separate, integrate

[(y+2)2afy=fdz,

and solve for y to obtain the general solution
y(1) = (Bt +o)'? -2,

where ¢ is any constant. To obtain the desired solution, we use the initial condition y(0) = 1
and solve

1=3-040)% 2

for ¢ to obtain ¢ = 27. So the solution to the given initial-value problem is
y(t) = Bt 4+ 2713 —2.

(b) This function is defined for all 1. However, v(—9) = —2, and the differential equation 1s not
defined at y = —2. Strictly speaking, the solution exists only for 7 > —9.

(e) Ast — 00, v(t) = 00. Ast — -9+, v(t) — —2.

2. The equilibrium points of dv/dt = f(y) are
the numbers y where f(v) = 0. For f(y) =
v2—4y —12 = (y —6)(y +2). the equilibrium
points are y = —2 and y = 6. Since f(y) is
positive for v < —2, negative for —2 < y < 6,
and positive for y > 6, the equilibrium point
v = —2 is a sink and the equilibrium point y =
6 is a source.

y=06 ¥ source

y=—2 & sink
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