HW Set #11 Sec 6.2 (1,2,4.8,15,16,18%); Sec 6.3 (5,6,8,15,18,27,28); Sec 6.4 (1,2,6,7)

1. (a) The function g,(r) = 1 precisely when u,(t) = 0, and go(r) = O precisely when u,(r) = 1, so
8a(t) =1 —uq(t).

(b) We can compute the Laplace transform of g,(#) from the definition

—as —0s 1
- ==

5 5 5 5

e

a
L[ga] :f le ™' dt = —
0

Alternately, we can use the table

—as

1 e
Llga]l = LI —ug(r)] = T

2. (a) We have rg(t) = ug(r)y(t — a), where (b)

v(t) = kt. Now ra(t)
L1y = kLl = 5, |
5 .l ramp function
so using the rules of Laplace transform,
‘F‘_ —as
Llra(t)] = Llug(t)y(t—a)]l = S v
- f t
a a+1
4. We have 1
L 3t -
] = —,

so using the rule
Lua(N)y(t — a)l = e “LIy(@)],

we determine that
Llua ()= L.
s—3

The desired function is > (1)e 2.
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HW Set #11 Sec 6.2 (1,2,4.8,15,16,18%); Sec 6.3 (5,6,8,15,18,27,28); Sec 6.4 (1,2,6,7)

8. Taking the Laplace transform of both sides of the equation gives us

£ I:j—:] = L[ua2(1)],
S0
,—25
sLly] —y(0) =
Substituting the initial condition yields
—25
s£[y] —3=—,
s
so that
e 3
LIy] = —— + =
5 5

By taking the inverse of the Laplace transform, we get
v(r) = ua(r)(r — 2) + 3.

To check our answer, we compute

dv d
@ _ %(r —2) + us (1),

dt
and since dus/dr = 0 except at r = 2 (where it is undefined),
dy B ;
i ua(1).

Hence, our v(r) satisfies the differential equation except when ¢+ = 2. (We cannot expect v(7) to
satisfy the differential equation at t = 2 because the differential equation is not continuous there.)
Note that v(¢) also satisfies the initial condition v(0) = 3.
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15. Taking the Laplace transform of both sides of the equation, we have

dy

&L [—] = —L[y]+ Llug(1)],
dt

which is equivalent to

e—ﬂ.ﬁ'

LY =y(0) = —LI]+ —

Solving for L[] yields
e ¥(0)

s{s+1)+s+1'

L[yl =

Using the partial fractions decomposition
1 1 1

s(s—l—l}:s s+l

we get
e —as g—as },{0)

L[v] = — .
L] s s+l+s+1

Taking the inverse Laplace transform, we obtain

V() = 1a(t) — 1z (1)e 4D 4 y(0)e ™!

= 1g(t) (1 — e_(f_”)) + v(0)e~".

To check our answer, we compute

dv d
d_?; - ;a (1 — e‘“_a)) +1g(1)e= "D — y(0)e™*

and since dug /dt = 0 except at t = a (where it is undefined),

dav
d—"l + v =ug()e” " — y(0)e™ + uy(1) (1 — e_“_”}) + y(0)e*

= lg(1).

Hence, our v(r) satisfies the differential equation except when r = a. (We cannot expect y(r) to
satisfy the differential equation at 1 = a because the differential equation is not continuous there.)
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16. We can write L[ /] as the sum of two integrals. that is,

o0 T oo
LIf]= f f(t)e Stdr = f f()ye 'dt + f f(t)e ™' dz.
0 0 T
Next, we use the substitution # = ¢t — 7 on the second integral. Note that r = u + T . We get
o0 oo
f f(ye st dt = f Fe+T)ye s@+D gy,
T 0
Since f is periodic with period T, we can rewrite the last integral as
o0
e Ts f fuw)e**du,
0
which is just e~ 75.£[ f]. Hence,

T
£1F]= f £y e~ dr + e T £ £,
0

We have r
(1 —e P)LIf]1= f f@)e " dr.
0

Consequently,
1 r ot

18. From the formula in Exercise 16, we see that we need only compute the integral fDl te—*" dt. Using
integration by parts (as in Exercise 2 of Section 6.1), we get

£l = 1 1 e ¥ e F
: T 1l_es\s2 2§

2 s(l—es)
5. Using the formula
dar?
and the linearity of the Laplace transform, we get that
s2L[y] = ¥'(0) — sy(0) + &*L[y] =0.

2.,
£ [d ‘] = s2.L[y] — ¥'(0) — 5(0),

Substituting the initial conditions and solving for £[v] gives

5
=are
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6. Since
L[coswi] =

5
52+ w?’
we can compute that
d £ . —5(2w) —2ws
—L[coswt] = = .
dw 24+ 0?)? (524 0?)?

but
d d )
—Lcoswt] =L | —coswi | = L[—1sinwi].
dw dw

We can bring the derivative with respect to @ inside the Laplace transform because the Laplace trans-
form is an integral with respect to 7, that is,

in{f[coswr] = A [co coswre T dt = fm A (coswt e™*") dr
dw do 0 0 dw )

Canceling the minus signs on left and right gives

2ws

8. We need to compute
o0
L[re?] = f re® et dr.
0
We can do this using the hint, by differentiating £[¢%'] with respect to a. Another method is to write

(e @] oo (e @]
L[1e] =f te® et dr :f te= Dt gy =f te "t dr
0 0 0

where r = 5 — a. The last integral is the Laplace transform of 7 using r as the new independent
variable. Hence, from the table we have

Substituting back r = s — a we have

15. In Exercise 11, we completed the square and obtained 52 + 25 + 10 = (s + 1) + 32, s0

£l - — g1 -
52425+ 10 (s 4+ 1)2 4 32

—lcf_l 3
3 (s +1)2+32

—t .
= —¢ 3r.
36’ sSin
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18. In Exercise 14, we completed the square and obtained s? + 65 + 10 = (s + 3)> + 12, so

s+ 1 B s+1
s24+6s+10 (s+3)2+12°

We want to put this fraction in the right form so that we can use the formulas for L[ cos wt] and
L[ sinwit]. We see that

s+1 . s+3 2
5+32+12 (432412 (s+3)24+12

s+1 .
L£71 |:—2 e 1 10] = el cost —2e M sinr.
s s
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27. (a) Taking the Laplace transform of both sides of the equation, we obtain

d%y 8
L] — | +4L[y] = -
[d:2]+ [v] o

and using the fact that L[d?y/dt?] = s2L[v] — sv(0) — ¥'(0), we have

8
(s + DLy —53(0) — V' (0) = -
§
(b) Substituting the initial conditions yields
2 - 8
(s2 4+ 4)Lly] — 11s — 5 = =,
3

and solving for L£[y] we get

lls+5+ 8
244 s(s244)

LIyl =

The partial fractions decomposition of 8/(s(s> + 4)) is

8 _A Bs+C
s(s2+4) s sT447

Putting the right-hand side over a common denominator gives us
(A+ B)s”> +Cs +4A =8,

and consequently, A =2, B = —2, and C = 0. In other words,

82 =
s(s24+4) s s244°
‘We obtain
£Iv] 2+9S—|—5
y] == )
' s s244

(¢) To take the inverse Laplace transform, we rewrite J£[v] in the form

2 s 50 2
LIy]1==+9 += .
D1=1 (52+4) 2(52+4)

Therefore, v(1) =2 +9cos 2t + % sin 27.
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28. (a) Taking the Laplace transform of both sides of the equation, we obtain

P dz}' £lv] = 1
arz | I T

and using the fact that £[d2y/a'r2] = szuﬁ[}-‘] — 5y(0) — ¥'(0), we have

1
(s* = DLLy] — sy(0) — y'(0) =
s—2
(b) Substituting the initial conditions yields
5 1
(s-—DLy]—s+1= ,
s—2

and solving for £[v] we get

1
s+1+{3—2}(52—1)'

LIyl =

Using the partial fractions decomposition

! S
(5—2)(52—1)25—2 s—1 s+1°

we obtain

1 1 7
LIy] = —=— 4+ —2 o _.
==+

(e) Taking the inverse Laplace transform, we have

y(t) = %em — %et +

(=1
-

1. This 1s the % case of L'Hopital’s Rule. Differentiating numerator and denominator with respect to
At, we obtain
Se.s‘.&f o (_S}g—sﬁf

2 1

which simplifies to
5 (es.f'_\f + 6,—5.&1‘)
2

Since both ¢*2f and ¢ —*2' tend to 1 as At — 0, the desired limit is s.
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2. Taking Laplace transforms of both sides and applying the rules yields

s2L[y] — 53(0) — ¥'(0) + 3L[y] = 5L[5,].

Simplifying, using the initial conditions, and the fact that £[8,] = ¢~ , we get

Hence,

This can be written as

which yields

(5% + 3)L[y] = 5e .

el
Lly] =35 .
l=53 3
5 3
LIy] = _g—zsi,
V3 s243

y(1) = %zrg(r} sin (ﬁ(r _ 2}) .
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6. (a) The characteristic polynomial of the unforced oscillator is A% 4 2 + 3. and the eigenvalues are
A = —1 =+ 4/2i. Hence, the natural period is /2  and the damping causes the solutions of the

unforced equation to tend to zero like e=7. At = 4, the system is given a jolt, so the solution

rises. After t = 4, the equation is unforced, so the solution again tends to zero as e .

(b) Taking Laplace transforms of both sides of the equation, we have
s2L[Y] — 53(0) — 3 (0) + 25LLy] — 2¥(0) + 3L[Y] = L]34].
Plugging in the initial conditions and solving for J£[v] gives us

s+ 2 e

L[v] = .
¥] 52—|—25+3+32—|—25—|—3

If we complete the square for the polynomial s> 425 4+ 3. we get s+ 25 +3 = (s + 1) 42,50

1 1 2 1 2
L[y] = ST 4__# +_€—4SL_
s+1)2+2 S2Gs+D2+2 2 (s+1)2 42

Therefore,

() = etcos/2r+ \%e_r sin/2¢ + %1!4(.’]6_“_4) sin{s/E{.f —4)).

(e) y

1*\
S~ ¢ 3

=T

8

Note that the solution goes through about 3 /4 of a natural period before the application of
the delta function. The delta function forcing causes the second maximum of the solution to
be much higher than it would have been without the forcing, but the long term effect is small
because the damping is fairly large.
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7. (a) From the table
L]l =e %

—as
_ 0 i e—ﬂ'&‘

sdiug] — g (0) =5 ¢

(b) The formula for the Laplace transform of a derivative is

L [ﬁ] = sL[yv] — ¥(0)

a7 : :
and this is exactly the relationship between the Laplace transforms of u,(7) and §,(7). Hence,
it is tempting to think of the Dirac delta function as the derivative of the Heaviside function.

(¢) We can think of the Heaviside function #4(#) as a limit of piecewise linear functions equal to
zero for 1 less than @ — Az, equal to one for 7 greater than @ + At and a straight line for 1 between
a — At and a + At. The derivative of this function 1s precisely the function g, used to define

the Dirac delta function. This 1s still just an informal relationship until we specify in what sense
we are taking the limit.
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