1. We have

$$
\begin{aligned}
\mathscr{L}[3] & =\int_{0}^{\infty} 3 e^{-s t} d t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} 3 e^{-s t} d t \\
& =\lim _{b \rightarrow \infty}\left(\left.\frac{-3}{s} e^{-s t}\right|_{0} ^{b}\right) \\
& =\lim _{b \rightarrow \infty}-\frac{3}{s}\left(e^{-s b}-e^{0}\right) \\
& =\frac{3}{s} \quad \text { if } s>0,
\end{aligned}
$$

since $\lim _{b \rightarrow \infty} e^{-s b}=\lim _{b \rightarrow \infty} 1 / e^{s b}=0$ if $s>0$.
2. We have

$$
\mathcal{L}[t]=\int_{0}^{\infty} t e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} t e^{-s t} d t
$$

To evaluate the integral we use integration by parts with $u=t$ and $d v=e^{-s t} d t$. Then $d u=d t$ and $v=-e^{-s t} / s$. Thus

$$
\begin{aligned}
\lim _{b \rightarrow \infty} \int_{0}^{b} t e^{-s t} d t & =\lim _{b \rightarrow \infty}\left(-\left.\frac{t e^{-s t}}{s}\right|_{0} ^{b}-\int_{0}^{b}-\frac{e^{-s t}}{s} d t\right) \\
& =\lim _{b \rightarrow \infty}\left(-\frac{b e^{-s b}}{s}-\left.\frac{e^{-s t}}{s^{2}}\right|_{0} ^{b}\right) \\
& =\lim _{b \rightarrow \infty}\left(-\frac{b e^{-s b}}{s}-\frac{e^{-s b}}{s^{2}}+\frac{e^{0}}{s^{2}}\right) \\
& =\frac{1}{s^{2}}
\end{aligned}
$$

since

$$
\lim _{b \rightarrow \infty}-\frac{b e^{-s b}}{s}=\lim _{b \rightarrow \infty} \frac{-b}{s e^{s b}}=\lim _{b \rightarrow \infty} \frac{-1}{s^{2} e^{s b}}=0
$$

by L'Hôpital's Rule if $s>0$.
3. We use the fact that $\mathscr{L}[d f / d t]=s \mathscr{L}[f]-f(0)$. Letting $f(t)=t^{2}$ we have $f(0)=0$ and

$$
\mathcal{L}[2 t]=s \mathscr{L}\left[t^{2}\right]-0
$$

or

$$
2 \mathscr{L}[t]=s \mathscr{L}\left[t^{2}\right]
$$

using the fact that the Laplace transform is linear. Then since $\mathcal{L}[t]=1 / s^{2}$ (by the previous exercise), we have

$$
\mathscr{L}\left[-5 t^{2}\right]=-5 \mathscr{L}\left[t^{2}\right]=-5\left(\frac{2 \mathscr{L}[t]}{s}\right)=-\frac{10}{s^{3}} .
$$

5. To show a rule by induction, we need two steps. First, we need to show the rule is true for $n=1$.

Then, we need to show that if the rule holds for n, then it holds for $n+1$.
(a) $n=1$. We need to show that $\mathcal{L}[t]=1 / s^{2}$.

$$
\mathcal{L}[t]=\int_{0}^{\infty} t e^{-s t} d t
$$

Using integration by parts with $u=t$ and $d v=e^{-s t} d t$, we find

$$
\begin{aligned}
\mathcal{L}[t] & =\left.\frac{t e^{-s t}}{-s}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-s t}}{s} d t \\
& =\lim _{b \rightarrow \infty}\left[\left.\frac{t e^{-s t}}{-s}\right|_{0} ^{b}\right]+\int_{0}^{\infty} \frac{e^{-s t}}{s} d t \\
& =\int_{0}^{\infty} \frac{e^{-s t}}{s} d t \\
& =-\left.\frac{e^{-s t}}{s^{2}}\right|_{0} ^{\infty} \\
& =\frac{1}{s^{2}} \quad(s>0) .
\end{aligned}
$$

(b) Now we assume that the rule holds for n, that is, that $\mathcal{L}\left[t^{n}\right]=n!/ s^{n+1}$, and show it holds true for $n+1$, that is, $\mathscr{L}\left[t^{n+1}\right]=(n+1)!/ s^{n+2}$. There are two different methods to do so:
(i)

$$
\mathscr{L}\left[t^{n+1}\right]=\int_{0}^{\infty} t^{n+1} e^{-s t} d t
$$

Using integration by parts with $u=t^{n+1}$ and $d v=e^{-s t} d t$, we find

$$
\mathscr{L}\left[t^{n+1}\right]=-\left.\frac{t^{n+1} e^{-s t}}{s}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{n+1}{s} t^{n} e^{-s t} d t
$$

Now,

$$
\begin{aligned}
-\left.\frac{t^{n+1} e^{-s t}}{s}\right|_{0} ^{\infty} & =\lim _{b \rightarrow \infty}\left[-\left.\frac{t^{n+1} e^{-s t}}{s}\right|_{0} ^{b}\right] \\
& =\lim _{b \rightarrow \infty} \frac{-b^{n+1} e^{-s b}}{s}+0 \\
& =0 \quad(s>0)
\end{aligned}
$$

So

$$
\begin{aligned}
\mathscr{L}\left[t^{n+1}\right] & =\int_{0}^{\infty} \frac{n+1}{s} t^{n} e^{-s t} d t \\
& =\frac{n+1}{s} \int_{0}^{\infty} t^{n} e^{-s t} d t \\
& =\frac{n+1}{s} \mathscr{L}\left[t^{n}\right] .
\end{aligned}
$$

Since we assumed that $\mathscr{L}\left[t^{n}\right]=n!/ s^{n+1}$, we get that

$$
\mathcal{L}\left[t^{n+1}\right]=\frac{n+1}{s} \cdot \frac{n!}{s^{n+1}}=\frac{(n+1)!}{s^{n+2}}
$$

which is what we wanted to show.
(ii) We use the fact that $\mathcal{L}[d f / d t]=s \mathscr{L}[f]-f(0)$. Letting $f(t)=t^{n+1}$ we have $f(0)=0$ and

$$
\mathcal{L}\left[(n+1) t^{n}\right]=s \mathscr{L}\left[t^{n+1}\right]-0
$$

or

$$
(n+1) \mathscr{L}\left[t^{n}\right]=s \mathscr{L}\left[t^{n+1}\right]
$$

using the fact that the Laplace transform is linear. Since we assumed $\mathcal{L}\left[t^{n}\right]=n!/ s^{n+1}$, we have

$$
\mathcal{L}\left[t^{n+1}\right]=\frac{n+1}{s} \mathscr{L}\left[t^{n}\right]=\frac{n+1}{s} \cdot \frac{n!}{s^{n+1}}=\frac{(n+1)!}{s^{n+2}},
$$

which is what we wanted to show.
7. Since we know that $\mathcal{L}\left[e^{a t}\right]=1 /(s-a)$, we have $\mathcal{L}\left[e^{3 t}\right]=1 /(s-3)$, and therefore,

$$
\mathcal{L}^{-1}\left[\frac{1}{s-3}\right]=e^{3 t}
$$

8. We see that

$$
\frac{5}{3 s}=\frac{5}{3} \cdot \frac{1}{s}
$$

so

$$
\mathcal{L}^{-1}\left[\frac{5}{3 s}\right]=\frac{5}{3},
$$

since $\mathscr{L}^{-1}[1 / s]=1$.
9. We see that

$$
\frac{2}{3 s+5}=\frac{2}{3} \cdot \frac{1}{s+5 / 3}
$$

so

$$
\mathcal{L}^{-1}\left[\frac{2}{3 s+5}\right]=\frac{2}{3} e^{-\frac{5}{3} t} .
$$

15. (a) We have

$$
\mathcal{L}\left[\frac{d y}{d t}\right]=s \mathscr{L}[y]-y(0)
$$

and

$$
\mathscr{L}\left[-y+e^{-2 t}\right]=\mathscr{L}[-y]+\mathscr{L}\left[e^{-2 t}\right]=-\mathscr{L}[y]+\frac{1}{s+2}
$$

using linearity of the Laplace transform and the formula $\mathcal{L}\left[e^{a t}\right]=1 /(s-a)$ from the text.
(b) Substituting the initial condition yields

$$
s \mathscr{L}[y]-2=-\mathscr{L}[y]+\frac{1}{s+2}
$$

so that

$$
(s+1) \mathscr{L}[y]=2+\frac{1}{s+2}
$$

which gives

$$
\mathcal{L}[y]=\frac{1}{(s+1)(s+2)}+\frac{2}{s+1}=\frac{2 s+5}{(s+1)(s+2)} .
$$

(c) Using the method of partial fractions,

$$
\frac{2 s+5}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2} .
$$

Putting the right-hand side over a common denominator gives $A(s+2)+B(s+1)=2 s+5$, which can be written as $(A+B) s+(2 A+B)=2 s+5$. So we have $A+B=2$, and $2 A+B=5$. Thus, $A=3$ and $B=-1$, and

$$
\mathcal{L}[y]=\frac{3}{s+1}-\frac{1}{s+2} .
$$

Therefore, $y(t)=3 e^{-t}-e^{-2 t}$ is the desired function.
(d) Since $y(0)=3 e^{0}-e^{0}=2, y(t)$ satisfies the given initial condition. Also,

$$
\frac{d y}{d t}=-3 e^{-t}+2 e^{-2 t}
$$

and

$$
-y+e^{-2 t}=-3 e^{-t}+e^{-2 t}+e^{-2 t}=-3 e^{-t}+2 e^{-2 t}
$$

so our solution also satisfies the differential equation.
18. (a) Taking Laplace transforms of both sides of the equation and simplifying gives

$$
\mathcal{L}\left[\frac{d y}{d t}\right]+4 \mathscr{L}[y]=\mathscr{L}[6]
$$

so

$$
s \mathscr{L}[y]-y(0)+4 \mathscr{L}[y]=\frac{6}{s}
$$

and $y(0)=0$ gives

$$
s \mathscr{L}[y]+4 \mathscr{L}[y]=\frac{6}{s} .
$$

(b) Solving for $\mathscr{L}[y]$ gives

$$
\mathcal{L}[y]=\frac{6}{s(s+4)} .
$$

(c) Using the method of partial fractions,

$$
\frac{6}{s(s+4)}=\frac{A}{s}+\frac{B}{s+4}
$$

Putting the right-hand side over a common denominator gives $A(s+4)+B s=6$, which can be written as $(A+B) s+4 A=6$. So, $A+B=0$, and $4 A=6$. Hence, $A=3 / 2$ and $B=-3 / 2$, and we have

$$
\mathcal{L}[y]=\frac{3 / 2}{s}-\frac{3 / 2}{s+4} .
$$

Thus,

$$
y(t)=\frac{3}{2}-\frac{3}{2} e^{-4 t}
$$

(d) To check, we compute

$$
\frac{d y}{d t}+4 y=6 e^{-4 t}+4\left(\frac{3}{2}-\frac{3}{2} e^{-4 t}\right)=6
$$

and $y(0)=3 / 2-3 / 2=0$, so our solution satisfies the initial-value problem.
25. First take Laplace transforms of both sides of the equation

$$
\mathcal{L}\left[\frac{d y}{d t}\right]=2 \mathscr{L}[y]+2 \mathscr{L}\left[e^{-3 t}\right]
$$

and use the rules to simplify, obtaining

$$
\begin{gathered}
s \mathscr{L}[y]-y(0)=2 \mathscr{L}[y]+\frac{2}{s+3} \\
(s-2) \mathscr{L}[y]=y(0)+\frac{2}{s+3} \\
\mathscr{L}[y]=\frac{y(0)}{s-2}+\frac{2}{(s-2)(s+3)} .
\end{gathered}
$$

Next note that

$$
\mathcal{L}\left[y(0) e^{2 t}\right]=y(0) /(s-2)
$$

For the other summand, first simplify using partial fractions,

$$
\frac{2}{(s-2)(s+3)}=\frac{A}{s-2}+\frac{B}{s+3}
$$

Putting the right-hand side over a common denominator gives $A(s+3)+B(s-2)=2$, which can be written as $(A+B) s+(3 A-2 B)=2$. This yields $A+B=0$ and $3 A-2 B=2$. Hence $B=-2 / 5$ and $A=2 / 5$, and

$$
\frac{2}{(s-2)(s+3)}=\frac{2 / 5}{s-2}-\frac{2 / 5}{s+3}
$$

Now, $\mathscr{L}\left[e^{2 t}\right]=1 /(s-2)$ and $\mathcal{L}\left[e^{-3 t}\right]=1 /(s+3)$ so

$$
\mathcal{L}[y]=\frac{y(0)}{s-2}+\frac{2}{5} \frac{1}{s-2}-\frac{2}{5} \frac{1}{s+3} .
$$

Hence,

$$
y(t)=y(0) e^{2 t}+\frac{2}{5} e^{2 t}-\frac{2}{5} e^{-3 t}
$$

The first two terms can be combined into one, giving

$$
y(t)=c e^{2 t}-\frac{2}{5} e^{-3 t}
$$

where $c=y(0)+2 / 5$.

