Complex Analysis

Class 31 (Friday April 10)

SUMMARY Applications of Residues to Real Integrals
CURRENT READING Brown \& Curchill pages 210-219
NEXT READING Brown \& Curchill 204-210
The beauty of Complex Residue Calculus is that it allows us to evaluate a vast number of contour integrals. In fact, we can show that we can use residues to evaluate associated real integrals which would otherwise be very difficult to get exact values for become quite easy as contour integrals.

Recall the definition of $z=e^{i \theta}=\cos (\theta)+i \sin (\theta)$ Therefore, we can write $\cos (\theta)$ and $\sin (\theta)$ in terms of z.

Exercise

Rewrite the integral $\int_{0}^{2 \pi} \frac{d \theta}{3+2 \sin \theta}$ in terms of z, using $z=e^{i \theta}$ where $0 \leq \theta \leq 2 \pi$.

Evaluate the real integral by evaluating the contour integral.

GROUPWORK

Show that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta=\frac{\pi}{12}$

Evaluation of real integrals of the form $\int_{-\infty}^{\infty} f(x) d x$
We can also evaluate Improper Integrals more easily by evaluating associated contour integrals. however, we have to have some conditions on the integrand $f(z)$.

Boundedness Theorem 1

If $|f(z)| \leq \frac{M}{R^{k}}$ for $z=R e^{i \theta}$ where $k>1$ and M are constants and C is the closed contour consisting of the real axis from $-R$ to $+R$ together with the semi-circle of radius R from $\theta=0$ to $\theta=\pi$, then

$$
\lim _{R \rightarrow \infty} \oint_{C} f(z) d z=0
$$

Boundedness Theorem 2

If $|f(z)| \leq \frac{M}{R^{k}}$ for $z=R e^{i \theta}$ where $k>1, n>0$ and M are constants and C is the closed contour consisting of the real axis from $-R$ to $+R$ together with the semi-circle of radius R from $\theta=0$ to $\theta=\pi$, then

$$
\lim _{R \rightarrow \infty} \oint_{C} f(z) e^{i n z} d z=0
$$

The second boundedness theorem is sometimes called Jordan's Lemma.

Exercise

Show that $\int_{0}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\sqrt{2}}{4} \pi$

GROUPWORK

Show that (for $a>0$) $\int_{0}^{\infty} \frac{\cos (a x)}{x^{2}+1} d x=\frac{\pi}{2} e^{-a}$

