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SUMMARY Classifying Singularities and Representing Functions using Series
CURRENT READING Brown & Curchill pages 150-154
NEXT READING Brown & Curchill pages 138-156

Cauchy’s Second Residue Theorem
If a function f(z) is analytic everywhere in the finite plane except for a finite number of
singular points interior to a positively oriented simple closed contour C , then
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In other words, instead of finding the residues of all the singularities of the given function
f(z) which lie inside the given contour C , all you need to do is find the residue at a single

point, z = 0, of the associated function
1
z2 f(

1
z
). Note what’s really going on involves

finding the residue of the function at the point at infinity.
Exercise
Evaluate

I
jzj=2�

tan(z) dz using Cauchy’s Second Residue Theorem.

GROUPWORK

Evaluate
I
jzj=2

3z + 2
z2 + 1

dz using Cauchy’s Second Residue Theorem.



Classifying Singularities
There are basically three types of singularities (points where f(z) is not analytic) in the com-
plex plane. They are called removable singularities, isolated singularities and branch
singularities.

Isolated Singularity
An isolated singularity of a function f(z) is a point z0 such that f(z) is analytic on the
punctured disc 0 < jz � z0j < r but is undefined at z = z0. We usually call isolated singu-
larities poles. An example is z = i for the function z=(z � i).

Removable Singularity
A removable singularity is a point z0 where the function f(z0) appears to be undefined
but if we assign f(z0) the value w0 with the knowledge that lim

z!z0
f(z) = w0 then we can

say that we have “removed” the singularity. An example would be the point z = 0 for
f(z) = sin(z)=z.

Branch Singularity
A branch singularity is a point z0 through which all possible branch cuts of a multi-valued
function can be drawn to produce a single-valued function. An example of such a point
would be the point z = 0 for Log (z).

There is also a special kind of isolated singularity, called an essential singularity. The
canonical example of an essential singularity is z = 0 for the function f(z) = e1=z. The
easiest way to define an essential singularity of a function involves Laurent Series (see
below).
Laurent series
In fact, the best way to identify an essential singularity z0 of a function f(z) (and an
alternative way to compute residues) is to look at the series representation of the function
f(z) about the point z0

That is,

f(z) =
1X
n=0

an(z � z0)
n +

1X
n=1

bn
(z � z0)n

; R1 < jz � z0j < R2

This formula for a Laurent series is sometimes written as

f(z) =
1X

n=�1

cn(z � z0)
n where cn =

1
2�i

I
C

f(z)

(z � z0)n+1dz; n = �1;�2; : : :

This first part of this series should look somewhat familiar from your experience with real
functions, since the expression is clearly a Taylor series if bn = 0 for all n. This first part
of the series representation is known as the analytic part of the function. The second part
(with the negative exponents) is called the principal part of the function. However if an and
bn are not all identically zero this type of series is called a Laurent series and converges to
the function f(z) in the annular region R1 < jz � z0j < R2.
Exercise
Let’s show why expressing the function f(z) in terms of a Laurent Series is useful by
proving that the value of the Res(f ; z0) is exactly equal to b�1 (or c�1), that is, the coefficient

of the
1

z � z0
term. We can do this by integrating the Laurent series term by term on some

closed contour C and using the CIF.



Review of Sequences and Series
Recall that an infinite sequence fzng converges to z if for each � > 0 there exists an N such
that if n > N then jzn � zj < �
The sequence z1; z2; z3; : : : ; zn; : : : converges to the value z = x + iy if and only if the
sequence x1; x2; x3; : : : converges to x and y1; y2; y3; : : : converges to y.
In other words lim

n!1
zn = z , lim

n!1
xn = x and lim

n!1
yn = y

An infinite series
1X
n=1

zn = z1 + z2 + z3 + � � � + zn + � � � converges to S if the sequence SN

of partial sums where SN = z1 + z2 + z3 + z4 + � � � + zN (N = 1; 2; 3; : : :) converges to

S: Then we say that
1X
n=1

zn = S:

As with sequences, series can be split up into real and imaginary parts. Suppose

zn = xn + iyn and
1X
n=1

zn = Z;
1X
n=1

xn = X and Y =
1X
n=1

yn then Z = X + iY .

Taylor series Suppose a function f is analytic throughout an open disk jz � z0j < R0

centered at z0 with radius R0: Then at each point z in this disk f(z) has the series repre-
sentation

f(z) =
1X
n=0

an(z � z0)
n where an =

f (n)(z0)

n!
for (n = 0; 1; 2; : : :)

In other words the function f(z) can be represented exactly by the infinite series in the
disk jz � z0j < R
When z0 = 0 the series is known as a Maclaurin series.
Here are some examples of well known Maclaurin series you should know.

ez = 1 + z +
z2

2!
+
z3

3!
+ : : : =

1X
k=0

zk

k!
jzj <1

sin(z) = z �
z3

3!
+
z5

5!
� : : : =

1X
k=0

(�1)k+1z2k+1

(2k + 1)!
jzj <1

cos(z) = 1�
z2

2!
+
z4

4!
� : : : =

1X
k=0

(�1)k+1z2k

(2k)!
jzj <1

sinh(z) = z +
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GROUPWORK
1. Write down the MacLaurin series for f(z) = e1=z.

2. What is the value of Res(e1=z; 0)?

3. Evaluate
I
jzj=1

e1=zdz two different ways.


