Complex Analysis

Class 29 (Monday April 6)

SUMMARY Classifying Singularities and Representing Functions using Series
CURRENT READING Brown \& Curchill pages 150-154
NEXT READING Brown \& Curchill pages 138-156

Cauchy's Second Residue Theorem

If a function $f(z)$ is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$
\oint f(z) d z=2 \pi i \operatorname{Res}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right) ; \mathbf{0}\right]
$$

In other words, instead of finding the residues of all the singularities of the given function $f(z)$ which lie inside the given contour C, all you need to do is find the residue at a single point, $z=0$, of the associated function $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$. Note what's really going on involves finding the residue of the function at the point at infinity.
Exercise
Evaluate $\oint_{|z|=2 \pi} \tan (z) d z$ using Cauchy's Second Residue Theorem.

GROUPWORK
Evaluate $\oint_{|z|=2} \frac{3 z+2}{z^{2}+1} d z$ using Cauchy's Second Residue Theorem.

Classifying Singularities

There are basically three types of singularities (points where $f(z)$ is not analytic) in the complex plane. They are called removable singularities, isolated singularities and branch singularities.

Isolated Singularity

An isolated singularity of a function $f(z)$ is a point z_{0} such that $f(z)$ is analytic on the punctured disc $0<\left|z \Leftrightarrow z_{0}\right|<r$ but is undefined at $z=z_{0}$. We usually call isolated singularities poles. An example is $z=i$ for the function $z /(z \Leftrightarrow i)$.

Removable Singularity

A removable singularity is a point z_{0} where the function $f\left(z_{0}\right)$ appears to be undefined but if we assign $f\left(z_{0}\right)$ the value w_{0} with the knowledge that $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ then we can say that we have "removed" the singularity. An example would be the point $z=0$ for $f(z)=\sin (z) / z$.

Branch Singularity

A branch singularity is a point z_{0} through which all possible branch cuts of a multi-valued function can be drawn to produce a single-valued function. An example of such a point would be the point $z=0$ for $\log (z)$.

There is also a special kind of isolated singularity, called an essential singularity. The canonical example of an essential singularity is $z=0$ for the function $f(z)=e^{1 / z}$. The easiest way to define an essential singularity of a function involves Laurent Series (see below).

Laurent series

In fact, the best way to identify an essential singularity z_{0} of a function $f(z)$ (and an alternative way to compute residues) is to look at the series representation of the function $f(z)$ about the point z_{0}
That is,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z \Leftrightarrow z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z \Leftrightarrow z_{0}\right)^{n}}, \quad R_{1}<\left|z \Leftrightarrow z_{0}\right|<R_{2}
$$

This formula for a Laurent series is sometimes written as

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n}\left(z \Leftrightarrow z_{0}\right)^{n} \quad \text { where } c_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z \Leftrightarrow z_{0}\right)^{n+1}} d z, \quad n= \pm 1, \pm 2, \ldots
$$

This first part of this series should look somewhat familiar from your experience with real functions, since the expression is clearly a Taylor series if $b_{n}=0$ for all n. This first part of the series representation is known as the analytic part of the function. The second part (with the negative exponents) is called the principal part of the function. However if a_{n} and b_{n} are not all identically zero this type of series is called a Laurent series and converges to the function $f(z)$ in the annular region $R_{1}<\left|z \Leftrightarrow z_{0}\right|<R_{2}$.

Exercise

Let's show why expressing the function $f(z)$ in terms of a Laurent Series is useful by proving that the value of the $\operatorname{Res}\left(f ; z_{0}\right)$ is exactly equal to b_{-1} (or $\left.c_{-1}\right)$, that is, the coefficient of the $\frac{1}{z \Leftrightarrow z_{0}}$ term. We can do this by integrating the Laurent series term by term on some closed contour C and using the CIF.

Review of Sequences and Series

Recall that an infinite sequence $\left\{z_{n}\right\}$ converges to z if for each $\epsilon>0$ there exists an N such that if $n>N$ then $\left|z_{n} \Leftrightarrow z\right|<\epsilon$
The sequence $z_{1}, z_{2}, z_{3}, \ldots, z_{n}, \ldots$ converges to the value $z=x+i y$ if and only if the sequence $x_{1}, x_{2}, x_{3}, \ldots$ converges to x and $y_{1}, y_{2}, y_{3}, \ldots$ converges to y.
In other words $\lim _{n \rightarrow \infty} z_{n}=z \Leftrightarrow \lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$
An infinite series $\sum_{n=1}^{\infty} z_{n}=z_{1}+z_{2}+z_{3}+\cdots+z_{n}+\cdots$ converges to S if the sequence S_{N} of partial sums where $S_{N}=z_{1}+z_{2}+z_{3}+z_{4}+\cdots+z_{N} \quad(N=1,2,3, \ldots)$ converges to S. Then we say that $\sum_{n=1}^{\infty} z_{n}=S$.
As with sequences, series can be split up into real and imaginary parts. Suppose $z_{n}=x_{n}+i y_{n}$ and $\sum_{n=1}^{\infty} z_{n}=Z, \sum_{n=1}^{\infty} x_{n}=X$ and $Y=\sum_{n=1}^{\infty} y_{n}$ then $Z=X+i Y$.

Taylor series Suppose a function f is analytic throughout an open disk $|z \Leftrightarrow z|<R_{0}$ centered at z_{0} with radius R_{0}. Then at each point z in this disk $f(z)$ has the series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z \Leftrightarrow z_{0}\right)^{n} \quad \text { where } a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} \text { for }(n=0,1,2, \ldots)
$$

In other words the function $f(z)$ can be represented exactly by the infinite series in the disk $\left|z \Leftrightarrow z_{0}\right|<R$
When $z_{0}=0$ the series is known as a Maclaurin series.
Here are some examples of well known Maclaurin series you should know.

$$
\begin{aligned}
& e^{z} \quad=\quad 1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\ldots \quad=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \quad|z|<\infty \\
& \sin (z) \quad=\quad z \Leftrightarrow \frac{z^{3}}{3!}+\frac{z^{5}}{5!} \Leftrightarrow \ldots \quad=\sum_{k=0}^{\infty} \frac{(\Leftrightarrow 1)^{k+1} z^{2 k+1}}{(2 k+1)!} \quad|z|<\infty \\
& \cos (z)=1 \Leftrightarrow \frac{z^{2}}{2!}+\frac{z^{4}}{4!} \Leftrightarrow \ldots \quad=\sum_{k=0}^{\infty} \frac{(\Leftrightarrow 1)^{k+1} z^{2 k}}{(2 k)!} \quad|z|<\infty \\
& \sinh (z) \quad z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\ldots \quad=\sum_{k=0}^{\infty} \frac{z^{2 k+1}}{(2 k+1)!} \quad|z|<\infty \\
& \cosh (z)=1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\ldots \quad=\sum_{k=0}^{\infty} \frac{z^{2 k}}{(2 k)!} \quad|z|<\infty \\
& \frac{1}{1 \Leftrightarrow z} \quad 1+z+z^{2}+z^{3}+\ldots \quad=\sum_{k=0}^{\infty} z^{k} \quad|z|<1 \\
& \ln (1+z)=\quad z \Leftrightarrow \frac{z^{2}}{2}+\frac{z^{3}}{3}+\ldots \quad=\sum_{k=1}^{\infty} \frac{z^{k}}{k} \quad|z|<1 \\
& (1+z)^{p}=1+p z+\frac{p(p \Leftrightarrow 1) z^{2}}{2!}+\ldots \frac{p(p \Leftrightarrow 1) \ldots(p \Leftrightarrow n+1)}{n!} \ldots \quad|z|<1 \\
& \tan (z)=z+\frac{z^{3}}{3}+\frac{2 z^{5}}{15}+\ldots \quad|z|<\frac{p i}{2}
\end{aligned}
$$

GROUPWORK

1. Write down the MacLaurin series for $f(z)=e^{1 / z}$.
2. What is the value of $\operatorname{Res}\left(e^{1 / z}, 0\right)$?
3. Evaluate $\oint_{|z|=1} e^{1 / z} d z$ two different ways.
