Complex Analysis

Math 312 (c) **1998 Ron Buckmire** MWF 10:30am - 11:25am Fowler 112

Class 29 (Monday April 6)

SUMMARY Classifying Singularities and Representing Functions using Series **CURRENT READING** Brown & Curchill pages 150-154 **NEXT READING** Brown & Curchill pages 138-156

Cauchy's Second Residue Theorem

If a function f(z) is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then

$$\oint f(z) \, dz = 2\pi i \operatorname{Res}\left[\frac{1}{z^2} f\left(\frac{1}{z}\right); \mathbf{0}\right]$$

In other words, instead of finding the residues of all the singularities of the given function f(z) which lie inside the given contour *C*, all you need to do is find the residue at a single point, z = 0, of the associated function $\frac{1}{z^2}f(\frac{1}{z})$. Note what's really going on involves finding the residue of the function at the point at infinity.

Exercise

Evaluate $\oint_{|z|=2\pi} \tan(z) dz$ using Cauchy's Second Residue Theorem.

GROUPWORK Evaluate $\oint_{|z|=2} \frac{3z+2}{z^2+1} dz$ using Cauchy's Second Residue Theorem.

Classifying Singularities

There are basically three types of singularities (points where f(z) is not analytic) in the complex plane. They are called **removable singularities**, **isolated singularities** and **branch singularities**.

Isolated Singularity

An isolated singularity of a function f(z) is a point z_0 such that f(z) is analytic on the punctured disc $0 < |z \Leftrightarrow z_0| < r$ but is *undefined* at $z = z_0$. We usually call isolated singularities **poles**. An example is z = i for the function $z/(z \Leftrightarrow i)$.

Removable Singularity

A removable singularity is a point z_0 where the function $f(z_0)$ appears to be undefined but if we assign $f(z_0)$ the value w_0 with the knowledge that $\lim_{z \to z_0} f(z) = w_0$ then we can say that we have "removed" the singularity. An example would be the point z = 0 for $f(z) = \sin(z)/z$.

Branch Singularity

A branch singularity is a point z_0 through which all possible branch cuts of a multi-valued function can be drawn to produce a single-valued function. An example of such a point would be the point z = 0 for Log (z).

There is also a special kind of isolated singularity, called an **essential singularity**. The canonical example of an essential singularity is z = 0 for the function $f(z) = e^{1/z}$. The easiest way to define an essential singularity of a function involves Laurent Series (see below).

Laurent series

In fact, the best way to identify an essential singularity z_0 of a function f(z) (and an alternative way to compute residues) is to look at the **series representation** of the function f(z) about the point z_0

That is,

$$f(z) = \sum_{n=0}^{\infty} a_n (z \Leftrightarrow z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z \Leftrightarrow z_0)^n}, \qquad R_1 < |z \Leftrightarrow z_0| < R_2$$

This formula for a Laurent series is sometimes written as

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z \Leftrightarrow z_0)^n \qquad \text{where } c_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z \Leftrightarrow z_0)^{n+1}} dz, \quad n = \pm 1, \pm 2, \dots$$

This first part of this series should look somewhat familiar from your experience with real functions, since the expression is clearly a **Taylor series** if $b_n = 0$ for all n. This first part of the series representation is known as the **analytic part** of the function. The second part (with the *negative exponents*) is called the **principal part** of the function. However if a_n and b_n are not all identically zero this type of series is called a **Laurent series** and converges to the function f(z) in the annular region $R_1 < |z \Leftrightarrow z_0| < R_2$.

Exercise

Let's show why expressing the function f(z) in terms of a Laurent Series is useful by proving that the value of the **Res** $(f; z_0)$ is exactly equal to b_{-1} (or c_{-1}), that is, the coefficient of the $\frac{1}{z \Leftrightarrow z_0}$ term. We can do this by integrating the Laurent series term by term on some closed contour *C* and using the CIF.

Review of Sequences and Series

Recall that an infinite **sequence** $\{z_n\}$ converges to z if for each $\epsilon > 0$ there exists an N such that if n > N then $|z_n \Leftrightarrow z| < \epsilon$

The sequence $z_1, z_2, z_3, \ldots, z_n, \ldots$ converges to the value z = x + iy if and only if the sequence x_1, x_2, x_3, \ldots converges to x and y_1, y_2, y_3, \ldots converges to y.

In other words
$$\lim_{n \to \infty} z_n = z \Leftrightarrow \lim_{n \to \infty} x_n = x$$
 and $\lim_{n \to \infty} y_n = y$

An infinite series $\sum_{n=1}^{\infty} z_n = z_1 + z_2 + z_3 + \dots + z_n + \dots$ converges to *S* if the sequence S_N of partial sums where $S_N = z_1 + z_2 + z_3 + z_4 + \dots + z_N$ $(N = 1, 2, 3, \dots)$ converges to *S*. Then we say that $\sum_{n=1}^{\infty} z_n = S$.

As with sequences, series can be split up into real and imaginary parts. Suppose $z_n = x_n + iy_n$ and $\sum_{n=1}^{\infty} z_n = Z$, $\sum_{n=1}^{\infty} x_n = X$ and $Y = \sum_{n=1}^{\infty} y_n$ then Z = X + iY.

Taylor series Suppose a function f is analytic throughout an open disk $|z \Leftrightarrow z_0| < R_0$ centered at z_0 with radius R_0 . Then at each point z in this disk f(z) has the series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z \Leftrightarrow z_0)^n \qquad \text{where } a_n = \frac{f^{(n)}(z_0)}{n!} \text{ for } (n = 0, 1, 2, \ldots)$$

In other words the function f(z) can be represented exactly by the infinite series in the disk $|z \Leftrightarrow z_0| < R$

When $z_0 = 0$ the series is known as a Maclaurin series.

Here are some examples of well known Maclaurin series you should know.

<u>GROUPWORK</u> **1.** Write down the MacLaurin series for $f(z) = e^{1/z}$.

2. What is the value of $\operatorname{Res}(e^{1/z}, \mathbf{0})$?

3. Evaluate $\oint_{|z|=1} e^{1/z} dz$ two different ways.