Complex Analysis

Math 312 Spring 1998 © Buckmire MWF 10:30am - 11:25am Fowler 112

Class 28 (Friday April 3)

SUMMARY Poles, Zeroes, Residues and Cauchy's Residue Theorem **CURRENT READING** Brown & Curchill pages 193-196 **NEXT READING** Brown & Curchill pages 180-196

Zeroes and Poles

So, we have had a lot of experience finding the **poles** of a function. The problem of finding a pole is equivalent to finding the **zero** of a related function. Let's formalize these definitions:

Zero

A point z_0 is called a **zero of order** m for the function f(z) if f is analytic at z_0 and f and its first m - 1 derivatives vanish at z_0 , but $f^{(m)}(z_0) \neq 0$.

Pole

A point z_0 is called a **pole of order** m of f(z) if 1/f has a zero of order m at z_0 . Identifying Poles and Zeroes

Identifying Poles and Zeroes

Let *f* be analytic. Then *f* has a zero of order mat z_0 if and only if f(z) can be written as $f(z) = g(z)(z - z_0)^m$ where *g* is analytic at z_0 and $g(z_0) \neq 0$.

If f(z) can be written as $f(z) = \frac{g(z)}{(z-z_0)^m}$ where g(z) is analytic at z_0 , then f has a **pole of** order m at $z = z_0$ and $g(z_0) \neq 0$

How do we find poles of a function? Well, if we have a quotient function f(z) = p(z)/q(z) where p(z) and q(z) are analytic at z_0 and $p(z_0) \neq 0$ then f(z) has a pole of order m if and only if q(z) has a zero of order m.

Exercise

We will classify all the singularities of $f(z) = \frac{3z + 2}{z^4 + 1}$

Groupwork

Let's try and classify all the singularities of the following functions:

(a)
$$f(z) = \frac{\cos z}{z^2(z-\pi)^3}$$

(b)
$$f(z) = \frac{\sin z}{z^2 - 4}$$

(c)
$$f(z) = \tan z$$

(d) $f(z) = \frac{z}{z^2 - 6z + 10}$

Residues

Once we know all the singularities of a function it is useful to compute the residues of that function. If a function f(z) has a pole of order m at z_0 , the residue, denoted by **Res**(f; z_0) or **Res**(z_0) is given by the formula below:

$$\mathbf{Res}(f;z_0) = \lim_{z \to z_0} \{ \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)] \}$$

Find the **residues** of all the singularities we previously classified.

Cauchy's Residue Theorem

If *f* is analytic on a simple (positively oriented) closed contour and everywhere inside except the finite number of points $z_1, z_2, \dots z_n$ inside, then

$$\oint f(z) \, dz = \mathbf{2}\pi i \sum_{k=1}^n \mathbf{Res}(z_k)$$

Use Cauchy Residue Theorem to evaluate the following integrals:

(a)
$$\oint_{|z|=5} \frac{\cos z}{z^2 (z-\pi)^3} dz$$

(b)
$$\oint_{|z|=5\pi} \frac{\sin z}{z^2-4} dz$$

(c)
$$\oint_{|z|=2\pi} \tan z \, dz$$

(d)
$$\oint_{|z|=8} \frac{z}{z^2 - 6z + 10} dz$$

(e)
$$\oint_{|z|=2} \frac{3z+2}{z^2+1}$$