Complex Analysis

Class 28 (Friday April 3)

SUMMARY Poles, Zeroes, Residues and Cauchy's Residue Theorem
CURRENT READING Brown \& Curchill pages 193-196
NEXT READING Brown \& Curchill pages 180-196

Zeroes and Poles

So, we have had a lot of experience finding the poles of a function. The problem of finding a pole is equivalent to finding the zero of a related function. Let's formalize these definitions:
Zero
A point z_{0} is called a zero of order m for the function $f(z)$ if f is analytic at z_{0} and f and its first $m-1$ derivatives vanish at z_{0}, but $f^{(m)}\left(z_{0}\right) \neq 0$.
Pole
A point z_{0} is called a pole of order m of $f(z)$ if $1 / f$ has a zero of order m at z_{0}.
Identifying Poles and Zeroes
Let f be analytic. Then f has a zero of order mat z_{0} if and only if $f(z)$ can be written as $f(z)=g(z)\left(z-z_{0}\right)^{m}$ where g is analytic at z_{0} and $g\left(z_{0}\right) \neq 0$.

If $f(z)$ can be written as $f(z)=\frac{g(z)}{\left(z-z_{0}\right)^{m}}$ where $g(z)$ is analytic at z_{0}, then f has a pole of order m at $z=z_{0}$ and $g\left(z_{0}\right) \neq 0$

How do we find poles of a function? Well, if we have a quotient function $f(z)=p(z) / q(z)$ where $p(z)$ and $q(z)$ are analytic at z_{0} and $p\left(z_{0}\right) \neq 0$ then $f(z)$ has a pole of order m if and only if $q(z)$ has a zero of order m.

Exercise

We will classify all the singularities of $f(z)=\frac{3 z+2}{z^{4}+1}$

Groupwork

Let's try and classify all the singularities of the following functions:
(a) $f(z)=\frac{\cos z}{z^{2}(z-\pi)^{3}}$
(b) $f(z)=\frac{\sin z}{z^{2}-4}$
(c) $f(z)=\tan z$
(d) $f(z)=\frac{z}{z^{2}-6 z+10}$

Residues

Once we know all the singularities of a function it is useful to compute the residues of that function. If a function $f(z)$ has a pole of order m at z_{0}, the residue, denoted by $\boldsymbol{\operatorname { R e s }}\left(f ; z_{0}\right)$ or $\operatorname{Res}\left(z_{0}\right)$ is given by the formula below:

$$
\boldsymbol{\operatorname { R e s }}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]\right\}
$$

Find the residues of all the singularities we previously classified.

Cauchy's Residue Theorem

If f is analytic on a simple (positively oriented) closed contour and everywhere inside except the finite number of points $z_{1}, z_{2}, \cdots z_{n}$ inside , then

$$
\oint f(z) d z=2 \pi i \sum_{k=1}^{n} \boldsymbol{\operatorname { R e s }}\left(z_{k}\right)
$$

Use Cauchy Residue Theorem to evaluate the following integrals:
(a) $\oint_{|z|=5} \frac{\cos z}{z^{2}(z-\pi)^{3}} d z$
(b) $\oint_{|z|=5 \pi} \frac{\sin z}{z^{2}-4} d z$
(c) $\oint_{|z|=2 \pi} \tan z d z$
(d) $\oint_{|z|=8} \frac{z}{z^{2}-6 z+10} d z$
(e) $\oint_{|z|=2} \frac{3 z+2}{z^{2}+1}$

