Complex Analysis

Math 312 Spring 1998 Buckmire MWF 10:30am - 11:25am Fowler 112

Class 27 (Wednesday April 1)

SUMMARY Theorems Following Cauchy's Integral Formulas **CURRENT READING** Brown & Curchill pages 130-135 **NEXT READING** Brown & Curchill pages 180-196

Implications of Cauchy's Integral Formula

We will take some time to see that we understand how the following theorems are derived from the CIF.

Cauchy's Inequality

Let *f* be analytic inside and on a circle $|z - z_0| = R$, taken in the positive sense, and denoted by C_R , then the derivatives of *f* as z_0 satisfy

 $|f^n(z_0)| \le \frac{n!M}{R^n}$ (n = 1, 2, 3, ...)

where $|f(z)| \leq M$ for all z on C_R .

<u>Proof</u>: (Use the generalized CIF to try and bound $f^{(n)}(z_0)$)

Liouville's Theorem

If *f* is *entire* and *bounded* in the complex plane, then f(z) is constant throughout the plane.

<u>Proof</u>: (Use Cauchy's Inequality when n = 1 and assume the radius has to be big enough to include the entire plane, e.g. $R \to \infty$)

Fundamental Theorem of Algebra

Every polynomial equation $P(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = 0$ with degree $n \ge 1$ and $a_n \neq \mathbf{0}$ has atleast one root.

Proof: The proof is by contradiction and uses Liouville's Theorem.

Gauss' mean value theorem

If f(z) is analytic inside and on a circle C with center z_0 and radius r then $f(z_0)$ is the mean of the values of f(z) on *C*, namely

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + r e^{i\theta}) d\theta$$

<u>Proof</u>: This is obvious by using the CIF and a parametrization for $|z - z_0| = r$ and interpreting the results.

Maximum modulus theorem

If f(z) is analytic inside and on a simple closed curve C and is not identically equal to a constant, then the maximum value of |f(z)| occurs on *C*. **Proof**:

Minimum modulus theorem

If f(z) is analytic inside and on a simple closed curve C and $f(z) \neq 0$ inside C, then the minimum value of |f(z)| occurs on C. **<u>Proof</u>**: Use the maximum modulus theorem with g(z) = 1/f(z).

Cauchy's Residue Theorem

If *f* is analytic on a simple (positively oriented) closed contour *C* and everywhere inside *C* except a finite number of points z_1, z_2, \cdots, z_n inside *C*, then

$$\oint_C f(z) \, dz = 2\pi i \sum_{k=1}^n \operatorname{Res}(z_k)$$

Before we talk about what a **residue** of a function f(z) at z_k , denoted by $\text{Res}(f, z_k)$ or $\operatorname{Res}(z_k)$ we will need to have a discussion about **poles**, zeroes and singularities.