Complex Analysis

Math 312 Spring 1998

Class 27 (Wednesday April 1)

SUMMARY Theorems Following Cauchy's Integral Formulas
CURRENT READING Brown \& Curchill pages 130-135
NEXT READING Brown \& Curchill pages 180-196

Implications of Cauchy's Integral Formula

We will take some time to see that we understand how the following theorems are derived from the CIF.

Cauchy's Inequality

Let f be analytic inside and on a circle $\left|z-z_{0}\right|=R$, taken in the positive sense, and denoted by C_{R}, then the derivatives of f as z_{0} satisfy

$$
\left|f^{n}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}} \quad(n=1,2,3, \ldots)
$$

where $|f(z)| \leq M$ for all z on C_{R}.
Proof: (Use the generalized CIF to try and bound $f^{(n)}\left(z_{0}\right)$)

Liouville's Theorem

If f is entire and bounded in the complex plane, then $f(z)$ is constant throughout the plane.
Proof: (Use Cauchy's Inequality when $n=1$ and assume the radius has to be big enough to include the entire plane, e.g. $R \rightarrow \infty$)

Fundamental Theorem of Algebra

Every polynomial equation $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0$ with degree $n \geq 1$ and $a_{n} \neq 0$ has atleast one root.
Proof: The proof is by contradiction and uses Liouville's Theorem.

Gauss' mean value theorem

If $f(z)$ is analytic inside and on a circle C with center z_{0} and radius r then $f\left(z_{0}\right)$ is the mean of the values of $f(z)$ on C, namely

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Proof: This is obvious by using the CIF and a parametrization for $\left|z-z_{0}\right|=r$ and interpreting the results.

Maximum modulus theorem

If $f(z)$ is analytic inside and on a simple closed curve C and is not identically equal to a constant, then the maximum value of $|f(z)|$ occurs on C.
Proof:

Minimum modulus theorem

If $f(z)$ is analytic inside and on a simple closed curve C and $f(z) \neq 0$ inside C, then the minimum value of $|f(z)|$ occurs on C.
Proof: Use the maximum modulus theorem with $g(z)=1 / f(z)$.

Cauchy's Residue Theorem

If f is analytic on a simple (positively oriented) closed contour C and everywhere inside C except a finite number of points $z_{1}, z_{2}, \cdots z_{n}$ inside C, then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \boldsymbol{\operatorname { R e s }}\left(z_{k}\right)
$$

Before we talk about what a residue of a function $f(z)$ at z_{k}, denoted by $\operatorname{Res}\left(f, z_{k}\right)$ or $\operatorname{Res}\left(z_{k}\right)$ we will need to have a discussion about poles,zeroes and singularities.

