Complex Analysis

Math 312 Spring 1998

Class 26 (Monday March 30)

SUMMARY Applications and Implications of Cauchy's Integral Formula
CURRENT READING Brown \& Curchill pages 123-125
NEXT READING Brown \& Curchill pages 125-129

Applications of Cauchy's Integral Formula

Let C be a simple closed (positively oriented) contour. If f is analytic in some simply connected domain D containing C and z_{0} is any point inside of C, then

$$
\int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

and

$$
\int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{m}} d z=\frac{2 \pi i}{(m-1)!} f^{(m-1)}\left(z_{0}\right)
$$

These two results lead to a number of other results. Actually, the two formulas are just restatement of one formula, known as the generalized Cauchy Integral Formula. Can you see how the first expression (CIF) is just a special case ($m=$??) of the second one?

Examples

We have rewritten the integral formulas in the way above so that we can use them to actually evaluate integrals. Let's to do the following two.
$\oint_{C} \frac{e^{5 z}}{z^{3}} d z=$
(where C is $|z|=1$ traversed once clockwise)
$\int_{C} \frac{2 z+1}{z(z-1)^{2}} d z=$

There are numerous theorems which directly follow from Cauchy's Integral Formula. I have listed a few of the more famous ones below...

Implications of Cauchy's Integral Formula

Morera's Theorem

If $f(z)$ is continuous in a simply-connected region R and if $\oiint_{C} f(z) d z=0$ around every simple closed curve C in R, then $f(z)$ is analytic in R.
(NOTE: Morera's Theorem is the converse of the Cauchy-Goursat theorem.)

Cauchy's Inequality

If $f(z)$ is analytic inside and on a circle of radius r and centered at $z=z_{0}$ then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{M \cdot n!}{r^{n}} \quad n=0,1,2, \ldots
$$

where M is an upper bound on $|f(z)|$ on C

Liouville's Theorem

Suppose that for all z in the entire complex plane, if $f(z)$ is analytic and bounded, (i.e. $|f(z)|<M$ for some real constant M) then $f(z)$ must be a constant.

Fundamental Theorem of Algebra

Every polynomial equation $P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}=0$ with degree $n \geq 1$ and $a_{n} \neq 0$ has atleast one root.

Gauss' mean value theorem

If $f(z)$ is analytic inside and on a circle C with center z_{0} and radius r then $f\left(z_{0}\right)$ is the mean of the values of $f(z)$ on C, namely

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Maximum modulus theorem

If $f(z)$ is analytic inside and on a simple closed curve C and is not identically equal to a constant, then the maximum value of $|f(z)|$ occurs on C.

Minimum modulus theorem

If $f(z)$ is analytic inside and on a simple closed curve C and $f(z) \neq 0$ inside C, then the minimum value of $|f(z)|$ occurs on C.

The Argument Theorem

Let $f(z)$ be analytic inside and on a simple closed curve C except for a finite number of poles inside C. Then

$$
\frac{1}{2 \pi i} \oint \frac{f^{\prime}(z)}{f(z)} d z=N-P
$$

where N and P are the number of zeroes and poles of $f(z)$ inside C

Rouche' Theorem

If $f(z)$ and $g(z)$ are analytic inside and on a simple closed curve C and if $|g(z)|<|f(z)|$ on C, then $f(z)+g(z)$ and $f(z)$ have the same number of zeros inside of C.

