Complex Analysis

Class 25 (Friday March 27)

SUMMARY Cauchy's Integral Formula and Integral Examples
CURRENT READING Brown \& Curchill pages 123-129
NEXT READING Brown \& Curchill pages 125-129

Cauchy's Integral Formula

Let C be a simple closed (positively oriented) contour. If f is analytic in some simply connected domain D containing C and z_{0} is any point inside of C then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

The CIF leads to some of the most astonishing results in complex analysis. It is a truly amazing idea; that the value of an analytic function at a point z_{0} in a simply-connected domain depends on values it takes on some closed contour C encircling the point.

An alternative proof of the result is reasonably straightforward and involves the continuity of $f(z)$ at every point in D and the formula for bounding a contour integral. You might try reading it on page 123-124 of the text.

Higher Derivatives of Analytic Functions

Here is the first of many amazing ideas derived from the CIF.
Let C be a simple closed (positively oriented) contour. If f is analytic in some simply connected domain D containing C and z_{0} is any point inside of C, then

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

and in fact you should be able to write down a general formula for the $n^{t h}$ derivative of $f(z)$ evaluated at z_{0} in terms of a contour integral:

$$
f^{(n)}\left(z_{0}\right)=
$$

This is an amazing result, because it means that when a function is analytic then all of its higher derivatives exist and are also each analytic!

Exercise

$$
\int_{|2 z|=3} \frac{e^{z^{2}}}{(z+i)(z+2)} d z=
$$

$$
\int_{|z|=3} \frac{e^{z^{2}}}{(z+i)(z+2)} d z=
$$

GROUPWORK

1. $\oint_{C} \frac{x^{2}-y^{2}}{2}+x y i d z \quad C:|z-i|=2$ counter-clockwise
2. $\oint_{C} \bar{z} d z, \quad C:|z|=2$ clockwise
3. $\oint_{C} \frac{d z}{z^{2}+\pi^{2}} \quad C:|z|=3$ counter-clockwise
4. $\oint_{C} \frac{\sinh (2 z)}{z^{2}+\pi^{2}} d z \quad C:|z+i|=3$ counter-clockwise
5. $\oint_{C} \frac{d z}{(z-3)^{4}} \quad C:|z-2|=2$ twice counter-clockwise

EXERCISE

Evaluate the following integral $\oint_{C} \frac{z+i}{z^{3}+2 z^{2}} d z$ where the contour C is
(a) the circle $|z|=1$ traversed once counter clockwise
(b) the circle $|z+2-i|=2$ traversed once counter clockwise
(c) the circle $|z-2 i|=1$ traversed once counter clockwise

