Complex Analysis

Math 312 Spring 1998
MWF 10:30am - 11:25am
Buckmire

Class 20 (Monday March 9)

SUMMARY Path Independence and the Cauchy-Goursat Theorem
CURRENT READING Brown \& Curchill pages 104-111
NEXT READING Brown \& Curchill pages 116-123
We have been practicing our complex integration skills. Today we will learn how to use antiderivatives and the Cauchy-Goursat Theorem to evaluate contour integrals more efficiently (simply!)
Recall that the value of $\int_{C} 2 \bar{z}^{2} d z$ did depend on the contour when we evaluated it in the previous class.
However the value of $\int_{C} 2 z^{2} d z$ did not depend on the contour chosen and in each case the integral is equal to $\frac{-32}{3}$
How is $f(z)=2 z^{2}$ a different function than $g(z)=2 \bar{z}^{2}$?
$2 z^{2}$ is a \qquad while $2 \bar{z}^{2}$ is a \qquad

Independence of Path

THEOREM: Suppose that the function $f(z)$ is continuous in a domain (open connected set) D and has an antiderivative $F(z)$ throughout D Гi.e. $d F / d z=f(z)$ at each point in D. Then for every contour Γ lying in D connecting z_{1} to z_{2} we have the result

$$
\int_{\Gamma} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

In otherwords Γ the value of the integral is independent of the path chosen to link z_{1} and z_{2}
So getting back to the difference between $f(z)=2 z^{2}$ and $g(z)=2 \bar{z}^{2}$ we know that $2 z^{2}$ has the property that it is continuous and is equal to the derivative of $2 z^{3} / 3$ on the open set $z \in$ C. $g(z)$ has no similar antiderivative. (This is not surprising Γ since $g(z)$ doesn't have a derivative either.)

Example

$\overline{\int_{C} 2 z^{2} d z}=$ where C is a contour from 2 to -2

Note that according to the above theorem the function $F(z)$ will be analytic and continuous on the domain D (since it has a derivative at every point of the open set D).
A corollary of the above theorem is the famous
Cauchy-Goursat Theorem: If $f(z)$ is analytic at all points interior to and on any simple closed contour $Г \Gamma$ then

$$
\oint_{\Gamma} f(z) d z=0 .
$$

(Is this result surprising?)
GROUPWORK

1. $\int_{C} \sin (i z)+2 e^{z} d z, \quad$ where C is a contour joining 0 to πi
2. $\oint_{C} \frac{d z}{z^{2}-4} d z, \quad$ where $C:|z|=1$
3. $\int_{-i}^{i} \frac{d z}{z^{2}} \quad$ and $\quad \oint_{C_{r}} \frac{d z}{z^{2}}$ where $C_{r}:|z|=1$
