Complex Analysis

Math 312 Spring 1998

Class 21 (Friday March 6)

SUMMARY Examples of Contour Integration
CURRENT READING Brown \& Curchill, pages 104-122
NEXT READING Brown \& Curchill pages 104-122

Parametricization of a line segment

Can you come up with a formula for a parametrization $z(t)$ of a directed line segment from point z_{1} to z_{2} where t starts at t_{1} and ends at t_{2} so that $z\left(t_{1}\right)=z_{1}$ and $z\left(t_{2}\right)=z_{2}$? Write it down below:

Exercise

Consider $\int_{C} 2 z^{2} d z$ where C is the directed line segment from $z=2$ to $z=-2$ (Sketch the contour and evaluate the integral.)

GROUPWORK

Again evaluate $\int_{C} 2 z^{2} d z$ where C is the circular arc going from $z=2$ to $z=-2$. (Sketch the contour and evaluate the integral.)

SUPPLEMENTARY EXERCISE

If you want more practice evaluating contours you should try to evaluate $\int_{C} 2 z^{2} d z$ where C is the directed line segment going from $z=2$ to $z=-2$ via the point $z=2 i$. (Sketch the contour and evaluate the integral.)

Question

What's the difference between the integral $\int_{-2}^{2} 2 \bar{z}^{2} d z$ and $\int_{-2}^{2} 2 z^{2} d z$?
Does the value of a contour integral depend on the path taken?
Does path dependence of a contour integral depend on the function involved? What property of the function is involved?

Proprties of Contour Integrals

$$
\begin{gathered}
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \\
\int_{-C} f(z) d z=-\int_{C} f(z) d z \\
\int_{C} z_{0} f(z) d z=z_{0} \int_{C} f(z) d z, \quad z_{0} \in \mathbf{C} \\
\int_{C} f(z)+g(z) d z=\int_{C} f(z) d z+\int_{C} g(z) d z \\
\left|\int_{C} f(z) d z\right| \leq M L
\end{gathered}
$$

where L is the length of the contour and $\int_{a}^{b}\left|z^{\prime}(t)\right| d t \leq L$
and M is an upper bound on $f(z),|f(z)| \leq M$

Exercise

If is the arc of the circle $|z|=2$ traversed in the counter-clockwise direction, then we want to show that

$$
\left|\int \frac{e^{z}}{z^{2}+1} d z\right| \leq \frac{4 \pi e^{2}}{3}
$$

