Complex Analysis

Math 312 Spring 1998
MWF 10:30am - 11:25am
Buckmire

Class 20 (Wednesday March 4)

SUMMARY Introduction to Contour Integration

CURRENT READING Brown \& Curchill, pages 95-104
NEXT READING Brown \& Curchill pages 104-122

Exercise

First, let's recall how to integrate complex functions of a real variable. Compute the following:

$$
\text { (a) } \int_{1}^{2} \frac{-i}{t^{2}}+(t+2 i)^{3} d t \quad(b) \int_{0}^{\infty} e^{-z^{2} t} d t
$$

Contour Integration

Integration of a complex function of a complex variable is performed on a set of connected points from, say, z_{1} to z_{2}. It is a contour integral. Given a contour C defined as $z(t)$ for $a \leq t \leq b$ where $z_{1}=z(a)$ and $z_{2}=z(b)$, an integral of a complex function of a complex variable $f(z)$ is written as

$$
\int_{C} f(z) d z \quad \text { or } \quad \int_{z_{1}}^{z_{2}} f(z) d z
$$

Let $f(z)$ be piecewise continuous on $z(t)$. If C is a contour then $z^{\prime}(t)$ is piecewise continuous on $a \leq t \leq b$ and we can redefine the integral of $f(z)$ along C as:

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] z^{\prime}(t) d t
$$

Examples

Compute $\int_{C} \operatorname{Im} z d z$ where C is a directed line segment from $z=0$ to $z=1+2 i$
ALGORITHM: (steps to be taken to complete the process of contour integration)
1: write down a parametricization for $C, z(t)$
2: Convert the integral into an integral in (real) t variables
3: Integrate!

Groupwork

Compute $\int_{C} 2 \bar{z}^{2} d z$ where C is a directed line segment from $z=2$ to $z=-2$. (Sketch the contour and evaluate the integral.)

Also evaluate $\int_{C} 2 \bar{z}^{2} d z$, this time using C being a counterclockwise circular arc from $z=2$ to $z=-2$. (Sketch the contour and then evaluate the integral.)

Also evaluate $\int_{C} 2 \bar{z}^{2} d z$, this time using C being a clockwise circular arc from $z=2$ to $z=-2$. (Sketch the contour and then evaluate the integral.)

Question

Does the value of a contour integral depand on the path taken?

Exercise

Show that

$$
\int_{C_{r}}\left(z-z_{0}\right)^{n} d z=\left\{\begin{array}{cc}
2 \pi i & n=-1 \\
0 & n \neq-1
\end{array}\right.
$$

where n is any integer and C_{r} is a circle of radius r around z_{0} (what is the equation of such a shape?) traversed once in the counter-clockwise direction. How will our results change if we reverse the direction of travel along the contour (i.e. move in a clockwise direction)?

