Complex Analysis

Math 312 Spring 1998 Buckmire MWF 10:30am - 11:25am Fowler 112

Class 15 (Friday February 20)

SUMMARY Linear transformations, inversion mappings, and bilinear transformations **CURRENT READING** Brown & Curchill, pages **NEXT READING** Brown & Curchill pages

Linear Transformation

Let us re-consider the idea that functions of a complex variable w = f(z) represent a mapping from the complex z=(x,y) plane to the complex w = (u, v) plane

Rotation: Rotation by an angle α

 $w = f_1(z) = e^{i\alpha}z$

Scaling: Magnification/reduction by a factor of |a| $w = f_2(z) = az$ (a is a real number) Translation: Shifting by a vector of size ($\operatorname{Re}(R)$) $\operatorname{Im}(R)$

Translation: Shifting by a vector of size (Re(B), Im(B))

 $w = f_3(z) = z + B$

What do all all these transformations have in common? What properties of the mage get preserved?

Examples

Consider the circle $C_1 : |z - 1| = 1$. Find a series of transformations which map C_1 onto $C_2 : |z - \frac{3}{2}i| = 2$

Sketch the series of transformations on the space below.

Using the relationship between *composition of functions* and *successive transformations* write down a single function which transforms C_1 into C_2

So, any linear transformation can be written as a composition of_____

The Inversion Mapping $\frac{1}{2}$

The function $w = \frac{1}{z}$ establishes a one-to-one correspondence between the nonzero points of the *z* and *w* planes.

Remember $|z|^2 = z\overline{z}$, so w = 1/z can be treated as two successive mappings

$$Z = \frac{1}{|z|^2} z, \qquad \qquad w = \overline{Z}$$

These mappings represent a ______ followed by a ______ Think about the points

- a. (|z| > 1): exterior to the circle |z| = 1
- **b.** (|z| < 1): interior to the circle |z| = 1
- c. ON the circle |z| = 1

Where do each of these sets get mapped to in the *w*-plane using the "inversion transformation?" [To answer this question you should pick a point in each one of these sets and see where it is mapped under the w = 1/z transformation]

What about the point z = 0? What does "infinity" mean in the realm of complex numbers?

Now that we know about the point at infinity we can take the following limits

$$\lim_{z \to \infty} f(z) = w_{\mathbf{0}} \Longleftrightarrow \lim_{z \to \mathbf{0}} f\left(\frac{1}{z}\right) = w_{\mathbf{0}}$$

PREGNANT PAUSE: Take 2 minutes and think about the concepts on this page.

Properties of the Inversion Mapping

The mapping w = 1/z maps the extended complex plane to itself on a one-to-one basis. The mapping 1/z transforms *circles and lines* into *circles and lines*

Lines passing thru the origin	\mapsto	Lines passing thru the origin
Lines NOT passing thru the origin	\mapsto	Circles passing thru the origin
Circles passing thru the origin	\longmapsto	Lines NOT passing thru the origin
Circles NOT passing thru the origin	\mapsto	Circles NOT passing thru the origin

Bilinear Transformations

Consider transformations of the form

$$w = f(z) = \frac{az+b}{cz+d}$$

They are also known as **bilinear transformations** or **M**ö**bius transformations**. Show that you can re-write this to produce an expression of the form

$$Azw + Bz + Cw + D = \mathbf{0}$$

Find values for A, B, C and D in terms of a, b, c and d.

Notice that if c = 0 then our bi-linear transformation (linear in z and w) becomes just a linear transformation in z.

If $c \neq 0$ then we can re-write w = f(z) as

$$w = \frac{a}{c} + \frac{bc - ad}{c} \frac{1}{cz + d}$$

If we look at the linear fractional transformation this way, we can see that it can be written as a composition of two linear transformations and an inverse mapping.

$$w = cz + d,$$
 $w_1 = \frac{1}{w},$ $w_2 = \frac{a}{c} + \frac{bc - ad}{c}w_1$

Find the composition of these three mappings above, so that $w_2 = T(z)$, and by so doing, show that T is a "LFT"

Therefore, we know that LFT's map *circles* and *lines* to ______ and

Properties of Linear Fractional Transformations

Let f be a Möbius transformation. Then

- *f* can be expressed as the composition of a finite number of rotations, translations, magnifications and inversions
- *f* maps the *extended complex-plane* to itself
- *f* maps the class of circles and lines to circles and lines
- *f* is **conformal** (i.e. $f'(z) \neq 0$) at every point besides its pole

A **pole** (regular singularity) of a function is a point z_0 where $\lim_{z\to z_0} f(z) = \infty$ Find the poles of

$$T(z) = \frac{az+b}{cz+d}$$

If a line or circle passes thru the pole of T then it must be mapped to a shape that goes thru the point at infinity. **Why?** What kind of shape would do that?

So, if a line or circle does NOT pass thru the pole of *T* it must get mapped to what kind of shape?

Where does T map the point at infinity to?

Since T is a one-to-one mapping on the extended complex plane, it has an inverse. If you solve w = T(z) so that $z = T^{-1}(w)$, then

$$T^{-1}(w) = \frac{-dw+b}{cw-a}, \qquad (ad-bc \neq \mathbf{0})$$

Note that T^{-1} is also an LFT. In general, if S and T are two LFTs, then S[T(z)] is also an LFT.

Example

Find the image of the *interior* of the circle |z - 2| = 2 under the LFT

$$w = f(z) = \frac{z}{2z - 8}$$

Sketch the image and pre-image of C under w = f(z)