Complex Analysis

Math 312 Spring 1998
MWF 10:30am - 11:25am
Buckmire

Class 15 (Friday February 20)

SUMMARY Linear transformations, inversion mappings, and bilinear transformations
CURRENT READING Brown \& Curchill, pages
NEXT READING Brown \& Curchill pages

Linear Transformation

Let us re-consider the idea that functions of a complex variable $w=f(z)$ represent a mapping from the complex $\mathrm{z}=(\mathrm{x}, \mathrm{y})$ plane to the complex $w=(u, v)$ plane
Rotation: Rotation by an angle α
$w=f_{1}(z)=e^{i \alpha} z$
Scaling: Magnification/reduction by a factor of $|a|$
$w=f_{2}(z)=a z$ (a is a real number)
Translation: Shifting by a vector of size $(\operatorname{Re}(B), \operatorname{Im}(B))$
$w=f_{3}(z)=z+B$
What do all all these transformations have in common? What properties of the mage get preserved?

Examples

Consider the circle $C_{1}:|z-1|=1$. Find a series of transformations which map C_{1} onto $C_{2}:\left|z-\frac{3}{2} i\right|=2$
Sketch the series of transformations on the space below.

Using the relationship between composition of functions and successive transformations write down a single function which transforms C_{1} into C_{2}

So, any linear transformation can be written as a composition of \qquad ,
\qquad

The Inversion Mapping $\frac{1}{z}$

The function $w=\frac{1}{z}$ establishes a one-to-one correspondence between the nonzero points of the z and w planes.
Remember $|z|^{2}=z \bar{z}$, so $w=1 / z$ can be treated as two successive mappings

$$
Z=\frac{1}{|z|^{2}} z, \quad w=\bar{Z}
$$

These mappings represent a \qquad followed by a \qquad .
Think about the points
a. $(|z|>1)$: exterior to the circle $|z|=1$
b. $(|z|<1)$: interior to the circle $|z|=1$
c. ON the circle $|z|=1$

Where do each of these sets get mapped to in the w-plane using the "inversion transformation?" [To answer this question you should pick a point in each one of these sets and see where it is mapped under the $w=1 / z$ transformation]

What about the point $z=0$? What does "infinity" mean in the realm of complex numbers?

Now that we know about the point at infinity we can take the following limits

$$
\lim _{z \rightarrow \infty} f(z)=w_{0} \Longleftrightarrow \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}
$$

PREGNANT PAUSE: Take 2 minutes and think about the concepts on this page.

Properties of the Inversion Mapping

The mapping $w=1 / z$ maps the extended complex plane to itself on a one-to-one basis. The mapping $1 / z$ transforms circles and lines into circles and lines

Lines passing thru the origin $\quad \longleftrightarrow \quad$ Lines passing thru the origin
Lines NOT passing thru the origin $\longmapsto \quad$ Circles passing thru the origin
Circles passing thru the origin $\longmapsto \quad$ Lines NOT passing thru the origin
Circles NOT passing thru the origin \longmapsto Circles NOT passing thru the origin

Bilinear Transformations

Consider transformations of the form

$$
w=f(z)=\frac{a z+b}{c z+d}
$$

They are also known as bilinear transformations or Möbius transformations. Show that you can re-write this to produce an expression of the form

$$
A z w+B z+C w+D=0
$$

Find values for A, B, C and D in terms of a, b, c and d.

Notice that if $c=0$ then our bi-linear transformation (linear in z and w) becomes just a linear transformation in z.
If $c \neq 0$ then we can re-write $w=f(z)$ as

$$
w=\frac{a}{c}+\frac{b c-a d}{c} \frac{1}{c z+d}
$$

If we look at the linear fractional transformation this way, we can see that it can be written as a composition of two linear transformations and an inverse mapping.

$$
w=c z+d, \quad w_{1}=\frac{1}{w}, \quad w_{2}=\frac{a}{c}+\frac{b c-a d}{c} w_{1}
$$

Find the composition of these three mappings above, so that $u_{2}=T(z)$, and by so doing, show that T is a "LFT"

Therefore, we know that LFT's map circles and lines to \qquad and

Properties of Linear Fractional Transformations

Let f be a Möbius transformation. Then

- f can be expressed as the composition of a finite number of rotations, translations, magnifications and inversions
- f maps the extended complex-plane to itself
- f maps the class of circles and lines to circles and lines
- f is conformal (i.e. $f^{\prime}(z) \neq 0$) at every point besides its pole

A pole (regular singularity) of a function is a point z_{0} where $\lim _{z \rightarrow z_{0}} f(z)=\infty$ Find the poles of

$$
T(z)=\frac{a z+b}{c z+d}
$$

If a line or circle passes thru the pole of T then it must be mapped to a shape that goes thru the point at infinty. Why? What kind of shape would do that?

So, if a line or circle does NOT pass thru the pole of T it must get mapped to what kind of shape?

Where does T map the point at infinity to?

Since T is a one-to-one mapping on the extended complex plane, it has an inverse. If you solve $w=T(z)$ so that $z=T^{-1}(w)$, then

$$
T^{-1}(w)=\frac{-d w+b}{c w-a}, \quad(a d-b c \neq 0)
$$

Note that T^{-1} is also an LFT. In general, if S and T are two LFTs, then $S[T(z)]$ is also an LFT.

Example

Find the image of the interior of the circle $|z-2|=2$ under the LFT

$$
w=f(z)=\frac{z}{2 z-8}
$$

Sketch the image and pre-image of C under $w=f(z)$

