# Complex Analysis 

Math 312 Spring 1998

## Class 13 (Wednesday February 11)

SUMMARY Complex Logarithms and the debut of branch cuts
CURRENT READING Brown \& Curchill, pages 75-81
NEXT READING Brown \& Curchill pages 81-85
The Complex Logarithm $\log z$
Let us define $w=\log z$ as the inverse of $z=e^{w}$
But we know that $\exp [\ln |z|+i(\theta+2 n \pi)]=z$, where $n \in Z$, from our knowledge of the exponential function.
So we can define

$$
\log z=\ln |z|+i \arg z=\ln |z|+i \operatorname{Arg} z+2 n \pi i=\ln r+i \theta
$$

where $r=|z|$ as usual, and $\theta$ is the argument of $z$
If we only use the principal value of the argument, then we define the principal value of $\log z$ as $\log z$, where

$$
\log z=\ln |z|+i \operatorname{Arg} z=\log |z|+i \operatorname{Arg} z
$$

## Examples

$\overline{\text { Compute }} \log (-2)$ and $\log (2), \log (-2)$, and $\log (2), \log (-4)$ and $\log (-4)$

## Logarithmic Identities

$z=e^{\log z}$ but $\log e^{z}=z+2 k \pi i$ (Is this a surprise?)
$\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$
$\log \left(\frac{z_{1}}{z_{2}}\right)=\log z_{1}-\log z_{2}$
However these do not neccessarily apply to the principal branch of the logarithm, written as $\log z$.

## $\log z:$ the Principal Branch of $\log z$

$\log z$ is a single-valued function and is analytic in the domain $D^{*}$ consisting of all points of the complex plane except for those lying on the nonpositive real axis, where

$$
\frac{d}{d z} \log z=\frac{1}{z}
$$

Sketch the set $D^{*}$ and convince yourself that it is an open connected set. (Ask yourself: Is every point in the set an interior point?)

The set of points $\operatorname{Re} z \leq 0 \cap \operatorname{Im} z=0$ is a line of discontinuities known as a branch cut. By putting in a branch cut we say that we "construct $\log z$ from $\log z$. ." Why can we not evaluate $\log z$ along the entire positive $x$-axis?

## Analyticity of $\log z$

We can use a version of the Cauchy-Riemann Equations in polar coordinates to help us investigate the analyticity of $\log z$

Why don't we investigate the analyticity of $\log z ?$
If $x=r \cos \theta$ and $y=r \sin \theta$ one can trewrite $f(z)=u(x, y)+i v(x, y)$ into $f=u(r, \theta)+$ $i v(r, \theta)$ in that case, the CREs become:

$$
u_{r}=\frac{1}{r} v_{\theta}, \quad v_{r}=-\frac{1}{r} u_{\theta}
$$

and the expression for the derivative $f^{\prime}(z)=u_{x}+i v_{x}$ can be re-written

$$
f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
$$

## GROUPWORK

Using this information, show that $\log z$ is analytic and that $\frac{d}{d z} \log z=\frac{1}{z}$.
(HINT: You will need to write down $u(r, \theta)$ and $v(r, \theta)$ for $\log z$ )

## Branching: Producing Single-valued functions from Multiple-valued ones

A single-valued function $F(z)$ is said to be a branch of a multiple-valued function $f(z)$ in a domain $D$ if $F(z)$ is single-valued and analytic in $D$ and has the property that for each $z \in D$, the value $F(z)$ is one of the values of $f(z)$

Branch cuts do not have to be along the $x$-axis, they can be any line which when removed from the domain of definition of the multi-valued function, produce a single valued function.

## Example

Determine the domain of analyticity for the function $f(z)=\log (3 z-i)$ and compute $f^{\prime}(z)$ What is $f(i)$ ? What about $f^{\prime}(i)$ ?

Other branches of $\log z$
One can define other analytic branches of $\log z$ by choosing different branch cuts.
The usual way to do this is to make the branch cut along $\theta=\alpha$ starting at the origin, so that

$$
\log z=\ln |z|+i \theta, \quad \text { where } \alpha<\theta<\alpha+2 \pi
$$

These branches of $\log z$ can be denoted $\mathcal{L}_{\alpha}$, where $\theta=\alpha$ is the branch cut.
A branch point of a function $f$ is a point which is common to all branch cuts of $f$. So, 0 is a branch point of $\log z$

## Roots of Complex Numbers (Reprise)

From previous identities about complex logarithms and the complex exponential, we can show (for $z \neq 0$ ) that

$$
z^{n}=\exp (n \log z), \quad \text { as long as } n \in Z
$$

Similarly,

$$
z^{1 / n}=\exp \left(\frac{1}{n} \log z\right)
$$

But

$$
\begin{aligned}
\exp \left(\frac{1}{n} \log z\right) & =\exp \left(\frac{1}{n}[\ln |z|+i(\operatorname{Arg} z+2 k \pi)]\right) \quad(k \in Z) \\
& =|z|^{1 / n} \exp \left(i\left[\frac{\operatorname{Arg} z}{n}+\frac{2 k \pi}{n}\right]\right) \\
& =|z|^{1 / n} \exp \left(\frac{i \theta+2 k \pi i}{n}\right) \quad \text { where } \theta=\operatorname{Arg} z
\end{aligned}
$$

But you should recognize the right hand side as the familiar formula for finding the root of a complex number, where $k$ is restricted to $0,1,2, \ldots, n-1$. Why would we do that? [HINT: how many distinct values does $\exp (2 k \pi i / n)$ have when $k$ can be any integer and $n$ is fixed?] What do you think happens if we try and raise a complex number to something besides an integer or rational number? How will we deal with complex exponents?

## Complex Exponents

If $z \neq 0$ and $c \in \mathcal{C}$, the function $z^{c}$ is defined as

$$
z^{c}=\exp (c \log z)
$$

Since $\log z$ is a multi-valued function, $z^{c}$ will have multiple values. How many values depends on the nature of $c$.

$$
z^{c}=\left\{\begin{array}{cll}
z^{n / m} & \text { if } c \text { is rational, i.e. } n / m & \text { finite number of values }(\mathrm{m}) \\
z^{n} & \text { if } c=n, \text { where } n \text { is an integer } & \text { single value } \\
z^{c} & \text { all other complex numbers } & \text { infinite number of values }
\end{array}\right.
$$

## Examples

Compute the following:
(a) $(1+i)^{1-i}=$
(b) $(0.5-i)^{3}=$
(c) $(-1)^{2 / 3}=$

## Differentiating

If you choose a branch of $z^{c}$ which is analytic on an open set, then

$$
\frac{d}{d z}\left(z^{c}\right)=c z^{c-1}
$$

where the branch of the $\log$ used in evaluating $z^{c}$ is the same branch used in evaluating $z^{c-1}$
Similarly, we can define the complex exponential function with base $c$

$$
c^{z}=\exp (z \log c)
$$

If a single value of $c$ is chosen, then $c^{z}$ is an entire function such that

$$
\frac{d}{d z}\left(c^{z}\right)=\frac{d}{d z} \exp (z \log c)=c^{z} \log c
$$

## Examples

If $f(z)=(1+i)^{z}$, Find $f^{\prime}(1-i)$ (Use the principal branch)

If $\left.g(z)=z^{( } 1-i\right)$, Find $f^{\prime}(1+i)$ (Use the principal branch)

