Complex Analysis

Math 312 Spring 1998

Class 12 (Monday February 9)

SUMMARY The Complex Exponential and other elementary functions
CURRENT READING Brown \& Curchill, pages 65-75
NEXT READING Brown \& Curchill pages 75-81
Now that we know something about analytic functions in general we need to expand our repertoire of complex functions.

The Complex Exponential e^{z}

The complex version of the exponential function is defined like this: $e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)$, where $\left|e^{z}\right|=e^{x}$ and $\arg \left(e^{z}\right)=y+2 k \pi, k=0, \pm 1, \pm 2, \ldots$
$\arg \left(e^{z}\right)=y+2 k \pi \quad(k=0, \pm 1, \pm 2, \ldots)$

Exercise

Show that $f(z)=e^{z}$ is an entire function and that $f^{\prime}(z)=e^{z}$
Take some time (3 minutes) to try and prove this. You will have to answer the questions:
1: What is an entire function?
2: How do you show that a function is analytic?
3: Do the real and complex parts of e^{z} obey the CRE?

More Properties of e^{z}

- e^{z} is never zero
- $e^{z}=1 \Longleftrightarrow z=2 \pi k i$
- $e^{z_{1}}=e^{z_{2}} \Longleftrightarrow z_{1}=z_{2}+2 k \pi i, \quad$ where $k \in Z$
- e^{z} is a periodic function with period $2 \pi i$

Sketch a fundamental region for e^{z} below

Other elementary functions

Once we have a handle on $\exp z$ we can use it to define other functions, most notably $\sin z$ and $\cos z$

$$
\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

GROUPWORK

Show that $\frac{d}{d z} \cos z=-\sin z$ by using the definition of $\cos z$

There a whole bunch of typical trigonometric identities which are valid for complex trig functions. Most of these can be proved using the definitions involving exponentials. For example, $\tan z, \sec z$ are analytic everywhere except at the zeroes of $\cos z$.

GROUPWORK

Find the zeroes of $\cos z$ and $\sin z$

The usual rules of derivatives of the trig functions remain valid for their complex counterparts.
Complex Trigonometric Identities

$$
\begin{aligned}
\sin (z+2 \pi)=\sin z, & \cos (z+2 \pi)=\cos z \\
\sin (-z)=-\sin z, & \cos (-z)=\cos z \\
\sin ^{2} z+\cos ^{2} z=1, & \tan ^{2} z+1=\sec ^{2} z \\
\sin 2 z=2 \sin z \cos z, & \cos 2 z=\cos ^{2}-\sin ^{2} z \\
\sec z=\frac{1}{\cos z}, & \tan z=\frac{\sin z}{\cos z} \\
\frac{d}{d z} \tan z=\sec ^{2} z, \frac{d}{d z} \sec z=\sec z \tan z & \frac{d}{d z} \sin z=\cos z, \frac{d}{d z} \sin z=\cos z
\end{aligned}
$$

Similarly the hyperbolic trigonometric functions can be defined using the complex exponential and the newly-defined complex trig functions

$$
\sinh z=\frac{e^{z}-e^{-z}}{2}, \quad \quad \cosh z=\frac{e^{z}+e^{-z}}{2}
$$

Complex Hyperbolic Trigonometric Identities

$$
\begin{aligned}
\sinh z=-i \sin i z, & \cosh z=\cos (i z) \\
\frac{d}{d z} \sinh z=\cosh z, & \frac{d}{d z} \cosh z=\sinh z
\end{aligned}
$$

