Complex Analysis

Math 312 Spring 1998
MWF 10:30am - 11:25am
Buckmire

Class 10 (Wednesday February 4)

SUMMARY Analyticity and the Cauchy-Riemann Equations
CURRENT READING Brown \& Curchill, pages 45-57
NEXT READING Brown \& Curchill, pages 48-50, 55-57, 59-64

Groupwork

Given $g(z)=z^{2}+z+i$ and $f(z)=\frac{1}{z}$
$g^{\prime}(z)=$
$f^{\prime}(z)=$
$[g(z) f(z)]^{\prime}=$
$[g(z) / f(z)]^{\prime}=$

Cauchy-Riemann Equations

We shall derive the Cauchy-Riemann equations by looking at the definition of the derivative of a function $f(z)=u(x, y)+i v(x, y)$ at the point z_{0}.

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& =\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)+i v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)}{\Delta x+i \Delta y}
\end{aligned}
$$

We shall do this limit twice, once letting $\Delta z \rightarrow 0$ horizontally and the other time letting $\Delta z \rightarrow 0$ vertically

This shows us that the existence of $f^{\prime}\left(z_{0}\right)$ implies the Cauchy-Riemann equations are satisfied at this point (and at every point in a neighborhood of z_{0}).
This is true since if $f^{\prime}\left(z_{0}\right)$ exists then f is analytic "at" this point.

ANALYTICITY \Rightarrow C.R.E.

To make satisfying the CRE a sufficient condition one needs the added condition that the first derivatives of u and v are continuous. If both these conditions are true and f is defined on an open set, then f is analytic on the open set.

$$
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=-i\left(u_{y}\left(x_{0}, y_{0}\right)+i v_{y}\left(x_{0}, y_{0}\right)\right)
$$

ANALYTICITY \Longleftrightarrow C.R.E. + Continuity of $u_{x}, u_{y}, v_{x}, v_{y}$

Example

$\overline{\text { Show that }} f(z)=\bar{z}$ is not analytic anywhere in the complex plane. You can do this in two ways:
1:

2 :

GROUPWORK

Example
Show that the function $f(z)=1 / z$ is analytic on the set $z \neq 0$. To do that you will have to answer the following questions:

- What is its domain of definition? Is this an open set?
- What are its component functions? Are there partial derivatives continuous?
- Do they satisfy the CRE?
- Is it analytic? On what set?

