Complex Analysis

Math 312 Spring 1998
MWF 10:30am - 11:25am
Buckmire

Class 8 (Friday January 30)

SUMMARY Continuity and Differentiability of Complex Functions
CURRENT READING Brown \& Curchill, pages 40-45
NEXT READING Brown \& Curchill, pages 45-57

Continuity

A complex function $f(z)$ is continuous at a point z_{0} if all three of the following statements are true

1: $\lim _{z \rightarrow z_{0}} f(z)$ exists
2: $f\left(z_{0}\right)$ exists
3: $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$
Consider the function below:

$$
f(z)= \begin{cases}\frac{z^{2}+4}{z-2 i}, & z \neq 2 i \\ 3+4 i, & z=2 i\end{cases}
$$

Answer the following questions
(a) What is the value of $\lim _{z \rightarrow 2 i} f(z)$?
(b) Is $f(z)$ continuous at $z=2 i$?
(c) Is $f(z)$ continuous at points $z \neq 2 i$?

We say that the function $f(z)$ defined above has a removable singularity at $z=2 i$. Write down the definition of $f(z)$ which has had the singularity removed.

More Aspects of Continuity

As with real functions of a real variable, sums, differences, products and compositions of continuous functions are continuous.

When $f(z)$ continuous $\Longleftrightarrow u(x, y)$ and $v(x, y)$ continuous
When $f(z)$ continouus in a region R, then $|f(z)|$ is also continuous in the region R and if R is a bounded and closed set then there exists a positive number M so that $|f(z)| \leq M \forall z \ni R$.

Derivative

Let f be defined in a neigborhood around z_{0}. The derivative of f at z_{0}, denoted by $f^{\prime}\left(z_{0}\right)$, is defined by

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

provided the above limit exists. The function f is said to be differentiable at z_{0}. Consider $f(z)=z^{2}$. Write down the expression $\frac{\Delta w}{\Delta z}=\frac{f(z+\Delta z)-f(z)}{\Delta z}$

The derivative $\frac{d w}{d z}=f^{\prime}(z)$ is defined as $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}$
Evaluate this limit for our function $f(z)=z^{2}$.

Write down $f^{\prime}(z)$

Write down the real and imaginary parts of the function $f(z)=z^{2}$

Write down the real and imaginary parts of the function $f^{\prime}(z)$ See any patterns?

Rules of Differentiation

The standard rules of differentiating function that you learned for real functions basically apply to complex functions. Scilicet:

$$
\frac{d}{d z}(c)=0 \quad \frac{d}{d z}(z)=1 \quad \frac{d}{d z}\left(z^{n}\right)=n z^{n-1} \quad \frac{d}{d z}\left(e^{z}\right)=e^{z}
$$

Linearity

$$
\frac{d}{d z}[c f(z)+g(z)]=c f^{\prime}(z)+g^{\prime}(z) \quad c \text { constant }
$$

Product Rule

$$
\frac{d}{d z}[f(z) g(z)]=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)
$$

Quotient Rule

$$
\frac{d}{d z}\left[\frac{f(z)}{g(z)}\right]=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{(g(z))^{2}}
$$

Aspects of Differentiation

One of the most important aspects to remember about differentiability and continuity is:

