Complex Analysis

Math 312 Spring 1998 **Buckmire**

MWF 10:30am - 11:25am Fowler 112

Class #6 (Monday January 26)

SUMMARY Functions of a Complex Variable

CURRENT READING Brown & Churchill, pages 26-32

NEXT READING Brown & Churchill, pages 33-38

Functions of a Complex Variable

Given a set S of complex numbers, a function f is a rule which assigns to each $z \in S$ a complex number w. The set S is knows as the **domain of definition** of f. (NOTE: The "domain of definition" is not necessarily a 'bf domain in the formal mathematical sense of the word.) The set of all $w \in \mathbb{Z}$ given by w = f(S) is called the **image of** S **under** f or the **range of** f.

The value w = f(z) can be written as u + iv, in other words:

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

where u(x, y) and v(x, y) are real functions of two real variables. **Example**

Write $f(z) = z^2 - z + 2i$ in the form w = u(x, y) + iv(x, y)

In addition, given a function w(x, y) you can write it in terms of z, \overline{z} and constants. **Example**

Write $w(x, y) = x^2 + iy^2$ in terms of z and \overline{z}

Mapping

As usual, operations using complex variables have geometric significance. First, let's get more practice evaluating functions of a complex variable: Using $f(z) = z^3$, compute

- (a) f(2) =
- **(b)** $f(\sqrt{2} + i\sqrt{2}) =$
- (c) f(2i) =

Example

If you consider w = f(z) a mapping from the *z*-plane to the *w*-plane, draw a sketch of what the "quarter-disc" of radius 2 in the first quadrant of the *z*-plane maps to in the *w*-plane under the mapping $f(z) = z^3$.

In the language of mathematics, we say that what you draw in the *w*-plane is **the image** of the quarter-disk in the *z*-plane *under* the mapping f(z)

- 1. Write down a definition of the "quarter disk of radius 2" using complex nequalities
- **2**. Shade in this region on your (x, y) axes (*z*-plane) below
- 3. Shade in the mapped region on your (u, v) axes (*w*-plane) below

On the other set of axes, sketch what the image of the mapping of the unit "quarter-disk" under $f(z) = 2z^4 - 2 - i$ looks like in the *w*-plane.

We generally can decompose mappings into 3 dominant characteristics or components. That is, mappings can be described as some combination of **rotation**, **translation** and **reflection**.

Rotation

Consider f(z) = (1 + i)z. How does this function represent a rotation mapping? (You may want to consider its effect on the set of points Im z = 0.)

Reflection

Consider $f(z) = \overline{z}$. How does this function represent a reflection mapping? (You may want consider the effect of f on the set of points Im z = 2.)

Translation

Consider f(z) = 2z - i. How does this function represent a translation mapping? (You may want consider the effect of f on the set of points |z| = 1.)

