Complex Analysis

Math 312 Spring 1998

Buckmire

Class \#6 (Monday January 26)

SUMMARY Functions of a Complex Variable
CURRENT READING Brown \& Churchill, pages 26-32
NEXT READING Brown \& Churchill, pages 33-38

Functions of a Complex Variable

Given a set S of complex numbers, a function f is a rule which assigns to each $z \in S$ a complex number w. The set S is knows as the domain of definition of f. (NOTE: The "domain of definition" is not necessarily a "bf domain in the formal mathematical sense of the word.) The set of all $w \in \mathcal{Z}$ given by $w=f(S)$ is called the image of S under f or the range of f.
The value $w=f(z)$ can be written as $u+i v$, in other words:

$$
w=f(z)=f(x+i y)=u(x, y)+i v(x, y)
$$

where $u(x, y)$ and $v(x, y)$ are real functions of two real variables.
Example
Write $f(z)=z^{2}-z+2 i$ in the form $w=u(x, y)+i v(x, y)$

In addition, given a function $w(x, y)$ you can write it in terms of z, \bar{z} and constants.

Example

$\overline{\text { Write } w(x, y)}=x^{2}+i y^{2}$ in terms of z and \bar{z}

Mapping

As usual, operations using complex variables have geometric significance.
First, let's get more practice evaluating functions of a complex variable:
Using $f(z)=z^{3}$, compute
(a) $f(2)=$
(b) $f(\sqrt{2}+i \sqrt{2})=$
(c) $f(2 i)=$

Example

If you consider $w=f(z)$ a mapping from the z-plane to the w-plane, draw a sketch of what the "quarter-disc" of radius 2 in the first quadrant of the z-plane maps to in the w-plane under the mapping $f(z)=z^{3}$.
In the language of mathematics, we say that what you draw in the w-plane is the image of the quarter-disk in the z-plane under the mapping $f(z)$

1. Write down a definition of the "quarter disk of radius 2 " using complex nequalities
2. Shade in this region on your (x, y) axes (z-plane) below
3. Shade in the mapped region on your (u, v) axes (w-plane) below

On the other set of axes, sketch what the image of the mapping of the unit "quarter-disk" under $f(z)=2 z^{4}-2-i$ looks like in the w-plane.

We generally can decompose mappings into 3 dominant characteristics or components. That is, mappings can be described as some combination of rotation, translation and reflection.

Rotation

Consider $f(z)=(1+i) z$. How does this function represent a rotation mapping?
(You may want to consider its effect on the set of points $\operatorname{Im} z=0$.)

Reflection

Consider $f(z)=\bar{z}$. How does this function represent a reflection mapping?
(You may want consider the effect of f on the set of points $\operatorname{Im} z=2$.)

Translation

Consider $f(z)=2 z-i$. How does this function represent a translation mapping?
(You may want consider the effect of f on the set of points $|z|=1$.)

